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1 The Topology of Rn

1 The Topology of Rn

1.1 Sets and notation

As we start our adventure into the world of multivariate and vector calculus, we must �rst ensure
that everybody is on the same page in terms of notation and basic set theory. While it is entirely
possible that the reader may already be passingly familiar with all of the following topics, one
could dedicate an entire course to exploring this subject, so it is worth meditating over, even if only
super�cially. We will begin by reviewing sets and the fundamental operations on sets, then follow
this with functions between such sets.

1.1.1 Basic Set Theory

A set is any collection of distinct objects.1 Some examples of sets might include

the alphabet = f a; b; c; : : : ; x; y; zg;
Universities in

Toronto
= f UofT; Ryerson; Yorkg;

The Kardashian Sisters = f Kim ; Khloe; Kourtney g:

We use the symbol 2̀ ' (read as `in') to talk about when an element is in a set; for example,
1 2 f 1; 2; 3g but •_ =2 f dog; catg.

Each of the previous examples were�nite sets, as they consisted of only a �nite number of
elements. A set can also have in�nitely many elements. In such instances, it is inconvenient to
write out every element of the set so we useset builder notation. Herein, if P is a proposition on
the set S, such that for each x 2 S, P(x) is either true or false, then one can de�ne the set

f x 2 S : P(x)g

which consists of all the elements inS which make P true. For example, if M is the set of months
in the year, then

f m 2 M : m has 31 daysg = f January; March; May; July; August; October; Decemberg:

This was an example where the resulting set was still �nite, but it still demonstrates the compactness
of setbuilder notation.

The following are some important in�nite sets that we will see throughout the course:

� The naturals 2 N = f 0; 1; 2; 3; : : :g,

� The integers Z = f :::; � 2; � 1; 0; 1; 2; :::g,

� The rationals Q = f p=q: p; q 2 Z; q 6= 0 ; gcd(p; q) = 1 g,

1This is not true, since it is possible to de�ne objects called classes, but we will not worry about this too much in
this context

2Some mathematicians do not believe that 0 is a natural number. I am personally undecided, and always just
choose which version is more convenient.
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1.1 Sets and notation 1 The Topology ofRn

� The reals R (the set of all in�nite decimal expansion).

We can also talk about subsets, which are collections of items in a set and indicated with a �̀ '
sign. For example, if P is the set of prime numbers, thenP � Z, since every element on the left (a
prime number) is also an element of the right (an integer). Alternatively, one hasN � Z � Q � R.
There is a particular distinguished set, known as theempty set and denoted by ; , which contains
no elements. Recalling the de�nition of a vacuous truth, it is not too hard to convince oneself that
empty set is a subset of every set!

Exercise: Determine the subset relations for the following sets:

1. S = f x 2 R : x = 2n; n 2 Zg,

2. T =
�

x 2 R : x = a � 1
2 ; 8a 2 N

	
,

3. U =
�

x 2 Q : x = p
2n ; gcd(p; k) = 1

	
,

4. V = f x 2 Z : x = 3 n ; n 2 Ng.

1.1.2 Operations on Sets

Union and Intersection Let S be a set and choose two setsA; B � S. We de�ne the union of
A and B to be

A [ B = f x 2 S : x 2 A or x 2 B g

and the intersection of A and B to be

A \ B = f x 2 S : x 2 A and x 2 B g:

A B

A [ B

A B

A \ B

Figure 1: Left: The union of two sets is the collection of all elements which are in both (though re-
member that elements of sets are distinct, so we do not permit duplicates). Right: The intersection
of two sets consists of all elements which are common to both sets.

Example 1.1

Determine the union and intersection of the following two sets:

A = f x 2 R : x > 1g; B = f x 2 R : � 1 < x < 2g:

c 2015 Tyler Holden
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1 The Topology of Rn 1.1 Sets and notation

Solution. By de�nition, one has

A [ B = f x 2 R : x 2 A or x 2 B g = f x 2 R : x > 1 or � 1 < x < 2g

= f x 2 R : x > � 1g;

A \ B = f x 2 R : x 2 A and x 2 B g = f x 2 R : x > 1 and � 1 < x < 2g

= f x 2 R : 1 < x < 2g:

�

Let I � N be an indexing set: Given a collection of setsf A i gi 2 I in S, one can take the
intersection or union over the entire collection, and this is often written as

[

i 2 I

A i = f x 2 S : 9i 2 I; x 2 A i g;
\

i 2 I

A i = f x 2 S : 8i 2 I; x 2 A i g:

Example 1.2

Consider the setf x 2 R : sin(x) > 0g. Write this set as as an in�nite union of intervals.

Solution. We are well familiar with the fact that sin( x) > 0 on (0; � ), (2�; 3� ), (4�; 5� ), etc. If we
let the interval I n = (2 n�; (2n + 1) � ) then the aforementioned intervals areI 0; I 1, and I 2. We can
convince ourselves that that sin(x) > 0 on any of the I n , and hence

f x 2 R : sin(x) > 0g =
[

n2 Z

I n =
[

n2 Z

(2n�; (2n + 1) � ): �

Example 1.3

De�ne I n =
�
0; 1

n

�
� R. Determine I =

\

n2 N

I n .

Solution. By de�nition, I consists of the elements which are inI n for every n 2 N. We claim that
I cannot consist of any positive real number. Indeed, ifp > 0 then there existsn 2 N such that
1
n < p , which means that p =2 I k for all k � n, and hence cannot be inI . SinceI has no positive real
numbers, and certainly cannot contain any non-positive real numbers, we conclude thatI = ; . �

Exercise: Let I n = ( � n; n) � R for n 2 N. Determine both
S

n I n and
T

n I n .

Complement If A � S then the complement of A with respect to S is all elements which are
not in A; that is,

Ac = f x 2 S : x =2 Ag:

6
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1.1 Sets and notation 1 The Topology ofRn

A

Ac

Figure 2: The complement of a setA with respect to S is the set of all elements which are inS
but not in A.

Example 1.4

Determine the complement ofI =
S

n2 Z(2n�; (2n + 1) � ) from Example 1.2, with respect to
R.

Solution. SinceI contains all the open intervals of the form (2n�; (2n + 1) � ) we expect its comple-
ment to contain everything else. Namely,

I c =
[

n2 Z

[(2n � 1)�; 2n� ]: �

Exercise:

1. Show that (A [ B )c = Ac \ B c,

2. Show that (A \ B )c = Ac [ B c,

3. Verify that I c =
\

n2 Z

(2n�; (2n + 1) � )c is an equivalent solution for Example 1.1.2.

Cartesian Product The Cartesian product of two sets A and B is the collection of ordered
pairs, one from A and one fromB ; namely,

A � B = f (a; b) : a 2 A; b 2 B g:

A geometric way (which does not generalize well) is to visualize the Cartesian product as sticking a
copy of B onto each element ofA, or vice-versa. For our purposes, the main example of the product
will be to de�ne higher dimensional spaces. For example, we know that we can represent the plane
R2 as an ordered pair of pointsR2 = f (x; y) : x; y 2 Rg; while three dimensional space is an ordered
triple R3 = f (x; y; z) : x; y; z 2 Rg. In this sense, we see thatR2 = R � R; R3 = R � R � R; and
motivates the more general de�nition of Rn as an orderedn-tuple

Rn = R � � � � � R| {z }
n-times

:

c 2015 Tyler Holden
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1 The Topology of Rn 1.1 Sets and notation

Exercise: We have swept some things under the rug in de�ningRn , largely because the true
nature is technical and boring. There is no immediate reason to suspect thatR � R � R
should be well de�ned: we �rst need to check that the Cartesian product is associative; that
is, (R � R) � R = R � (R � R). By de�nition, the left-hand-side is

(R � R) � R = f ((a; b); c) : (a; b) 2 R � R; c 2 Rg

while the right-hand-side is

R � (R � R) = f (a; (b; c)) : a 2 R; (b; c) 2 R � Rg:

Syntactically, neither of these looks the same asR3 = f (a; b; c) : a; b; c2 Rg, but nonetheless
they all de�ne the same data.

Exercise: Let S1 =
�

(x; y) : x2 + y2 = 1
	

� R2 be the unit circle. What familiar shape is
S1 � S1?

1.1.3 Functions Between Sets

Given two sets A; B , a function f : A ! B is a map which assigns to every point inA a unique
point of B . If a 2 A, we usually denote the corresponding element ofB by f (a). When specifying
the function, one may write a 7! f (a). The set A is termed the domain, while B is termed the
codomain.

It is important to note that not every element of B needs to be hit by f ; that is, B is not
necessarily the range off . Rather, B represents the ambient space to whichf maps. Also, if either
of the domain or codomain changes the function itself changes. This is because the data of the
domain and codomain are intrinsic to the de�nition of a function. For example, f : R ! R given
by f (x) = x2 is a di�erent function than g : R ! [0; 1 ), g(x) = x2.

De�nition 1.5

Let f : A ! B be a function.

1. If U � A, then we de�ne the image of U to be

f (U) = f y 2 B : 9x 2 U; f (x) = yg = f f (x) : x 2 Ug:

2. If V � B , we de�ne the pre-image of V to be

f � 1(V ) = f x 2 A : f (x) 2 Vg:

Note that despite being written as f � 1(V ), the preimage of a set does not say anything about
the existence of an inverse function.

8
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1.1 Sets and notation 1 The Topology ofRn

U

A

f (U)

B
f : A ! B

Example 1.6

Let f : R ! R be speci�ed by f (x) = x2. Determine f ([0; 1]) and f � 1(f ([0; 1]).

Solution. By de�nition, one has

f ([0; 1]) = f f (x) : x 2 [0; 1]g = [0 ; 1]:

On the other hand, sincef ([0; 1]) = [0 ; 1] we know that f � 1(f ([0; 1])) = f � 1([0; 1]) for which

f � 1([0; 1]) = f x 2 R : f (x) 2 [0; 1]g = [ � 1; 1]: �

Example 1.7

Let f : R3 ! R2 be given by f (x; y; z) = ( x; y). If

S2 =
�

(x; y; z) 2 R3 : x2 + y2 + z2 = 1
	

;

determine f (S2).

Solution. Let (a; b; c) 2 S2 so that a2 + b2 + c2 = 1. The image of this point under f is f (a; b; c) =
(a; b). It must be the case that a2 + b2 � 1, and sof (S2) � D 2 =

�
(x; y) 2 R2 : x2 + y2 � 1

	
. We

claim that this is actually an equality; that is, f (S2) = D 2. In general, to show that two sets A
and B are equal, we need to showA � B and B � A. As we have already shown thatf (S2) � D 2,
we must now show that D 2 � f (S2).

Let (a; b) 2 D 2 so that a2 + b2 � 1. Let c =
p

1 � a2 � b2, which is well-de�ned by hypothesis.
Then a2 + b2 + c2 = 1 so that ( a; b; c) 2 S2, and f (a; b; c) = ( a; b). Thus f (S2) = D 2. �

Exercise: Let f : R3 ! R2 be the function given in Example 1.7. Determinef � 1(D 2).

We conclude this section by mentioning three important classes of function:

c 2015 Tyler Holden
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1 The Topology of Rn 1.2 Structures onRn

De�nition 1.8

Let f : A ! B be a function. We say that

1. f is injective if whenever f (x) = f (y) then x = y,

2. f is surjective if for every y 2 B there exists anx 2 A such that f (x) = y,

3. f is bijective if f is both injective and surjective.

Notice that the choice of domain and codomain are exceptionally important determining whether
a function is injective or surjective. For example, the function f : R ! R given by f (x) = x2 is
not surjective (it misses the negative real numbers), while the functionf : R ! [0; 1 ) is surjective
(there are no negative real numbers to miss).

Example 1.9

Determine whether the following functions are injective, surjective, or bijective.

1. f : R3 ! R2, f (x; y; z) = ( x; y),

2. g : R2 ! R2, g(x; y) = ( ex ; (x2 + 1) y),

3. h : R2 ! R2, h(x; y) = ( y; x).

Solution.

1. The function f is certainly not injective, since f (x; y; a) = ( x; y) = f (x; y; b) for any a and b.
On the other hand, it is surjective, since if (x0; y0) 2 R2 then f (x0; y0; 0) = ( x0; y0).

2. The function g is injective: to see this, note that if g(a1; b1) = g(a2; b2) then (ea1 ; (a2
1+1) b1) =

(ea2 ; (a2
2+1) b2) which can only happen ifea1 = ea2 . Since the exponential function is injective,

a1 = a2. This in turn implies that ( a2
1 + 1) = ( a2

2 + 1) and neither can be zero, so dividing
the second component we getb1 = b2 as required. On the other hand,g is not surjective. For
example, there is no point which maps to (0; 0).

3. This function is both injective and surjective. Both are left as simple exercises. We conclude
that h is bijective.

�

1.2 Structures on Rn

1.2.1 The Vector Space Structure

Any student familiar with linear algebra knows that Rn admits a vector space structure: one can
add vectors in Rn and multiply by scalars. For those uninitiated, we briey review the subject
here.

10
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1.2 Structures onRn 1 The Topology of Rn

Very roughly, a real vector space is any set in which two elements may be added to get another
element of the set, as well as multiplied by a real number. Additionally, there must be an element
0 such that summing against zero does nothing. The full collection of axioms that de�ne a vector
space are too many to write down and are the topic of a linear algebra course, so refer the student
to their favourite textbook.

The elements of the set are calledvectors, while the real number multiples are calledscalars.
For notation sake, we will denote vectors by bold fontx and scalars by non-bold font.

Recall that elements x 2 Rn just look like n-tuples of real numbers. If x = ( x1; : : : ; xn ); y =
(y1; : : : ; yn ) are elements ofRn we can add them together and multiply by a scalar c 2 R in a
pointwise fashion

0

B
B
B
@

x1

x2
...

xn

1

C
C
C
A

+

0

B
B
B
@

y1

y2
...

yn

1

C
C
C
A

=

0

B
B
B
@

x1 + y1

x2 + y2
...

xn + yn

1

C
C
C
A

; c

0

B
B
B
@

x1

x2
...

xn

1

C
C
C
A

=

0

B
B
B
@

cx1

cx2
...

cxn

1

C
C
C
A

:

The zero vector is, unsurprisingly, the n-tuple consisting entirely of zeroes: 0 = (0 ; : : : ; 0). See
Figure 3 for a visualization of vector addition and scalar multiplication.

The diligent student might notice that I have been sloppy in writing vectors: there is a technical
but subtle di�erence between vectors written horizontally and those written vertically. Once again,
we will not be terribly concerned with the distinction in this course, so we will use whichever
convention is simplest. In the event that the distinction is necessary, we will mention that point
explicitly at the time.

2v1 = (2 ; 2)

v1 = (1 ; 1)

v2 = (2 ; � 1)

R2

v1 + v2 = (3 ; 0)

Figure 3: One may think of a vector as either representing a point in the plane (represented by
the black dots) or as direction with magnitude (represented by the red arrows). The blue arrows
correspond to the sumv1 + v2 and the scalar multiple 2v1. Notice that both are simply computed
pointwise.

1.2.2 Of Lengths and Such

There are three intimately related structures which we will now impose onR, which are the notion
of an inner product, a norm, and a metric. The �rst is that of an inner product. While there
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1 The Topology of Rn 1.2 Structures onRn

are many di�erent kinds of inner products, the one with which we will be most concerned is the
Euclidean inner product, also known as simply thedot product. Given two vectors x = ( x1; : : : ; xn )
and y = ( y1; : : : ; yn ) in Rn , we write

hx; y i = x � y :=
nX

i =1

x i yi = x1y1 + x2y2 + � � � + xnyn :

Geometrically, the dot product x � y is the length of the projection of x onto the unit vector in the
y direction, or vice versa. More precisely, ify 2 Rn then ŷ = y

ky k is a unit vector that points in
the same direction asy , and

hx; y i
kyk

ŷ =
hx; y i

kyk2 y

is the projection of x into ŷ . If hv ; w i = 0, we say that v and w are orthogonal, which we recognize
will happen precisely whenx and y are perpendicular.

y

x

x � y
kyk

Figure 4: The inner product of x and y , written x � y is the length of the projection of the vector
x onto y .

Example 1.10

If v = (1 ; � 1; 2) and w = (2 ; 0; 4) are vectors in R3, determine hv ; w i .

Solution. We need only apply the de�nition to �nd that

hv ; w i = v1w1 + v2w2 + v3w3 = (1 � 2) + ( � 1 � 0) + (2 � 4) = 10: �

Proposition 1.11

The inner product satis�es the following properties: Let x; y ; z 2 Rn and c 2 R,

1. Symmetry: hx; y i = hy ; x i ,

2. Non-negative: hx; x i � 0 and is equal to zero if and only ifx = 0,

3. Linearity: hcx + y ; zi = chx; zi + hy ; zi .

These properties are straightforward to verify and are left as an exercise for the student.

12
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1.2 Structures onRn 1 The Topology of Rn

The next structure is called a norm, and prescribes a way of measuring the length of a vector.
Our motivation comes from the one-dimensional case, where we know that the absolute valuej � j
is used to measure distance. As such, we de�nek�k : Rn ! R as the function

kxk :=
p

hx; x i =

 
nX

i =1

x2
i

! 1=2

=
q

x2
1 + x2

2 + � � � + x2
n :

First, we recognize that this generalizes the Pythagorean Theorem inR2, since if x = ( x; y) then
the vector x looks like the hypotenuse of a triangle with side lengthsx and y. The length of the
hypotenuse is just

p
x2 + y2 = kxk (See Figure 5).

kx
k =

p x2
+ y2

x = ( x; y)

x

y

Figure 5: In R2, the length of a vector can be derived from the Pythagorean theorem. The norm
k�k generalizes this notion to multiple dimensions.

Exercise: Let x = ( x; y; z) 2 R3. Determine the length of this vector using the Pythagorean
theorem and con�rm that one gets the same value askxk.

Example 1.12

If v = (6 ; 8; 5), compute kvk.

Solution. We again just apply the de�nition to get

kvk =
p

62 + 8 2 + 5 2 =
p

125 = 5
p

5: �

A very important relationship between the inner product and the norm of v is the Cauchy-
Schwarz inequality:

Proposition 1.13

If x ; y 2 Rn then
j hx; y i j � k xkkyk:

This proof is not terribly enlightening, nor is it very intuitive. The student may refer to the
textbook for a proof.

c 2015 Tyler Holden
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1 The Topology of Rn 1.2 Structures onRn

Example 1.14

Let v = (1 ; � 1; 2) and w = (2 ; 0; 4) as in Example 1.10. Computekvk and kwk and con�rm
that the Cauchy-Schwarz inequality holds.

Solution. We already saw that hv ; w i = 10. Computing the norms one gets

kvk =
p

6; kwk =
p

20

so that kvkkwk =
p

120 which is greater than 10 =
p

100. �

Proposition 1.15

Let x; y 2 Rn and c 2 R. The norm k�k satis�es the following properties:

1. Non-degeneracy: kxk � 0 with equality if and only if x = 0,

2. Normality: kcxk = jcjkxk,

3. Triangle Inequality: kx + yk � k xk + kyk.

Proof. The �rst two properties follow immediately from properties of the inner product and are
left as an exercise for the student. We resolve thus to prove the Triangle Inequality. Here one has

hx + y ; x + y i = hx; x i + 2 hx; y i + hy ; y i

� h x; x i + 2kxkkyk + hy ; y i by Cauchy-Schwarz

= ( kxk + kyk)2 :

By taking the square root of both sides, we get the desired result.

The triangle inequality is so named because it relates the sides of a triangle. Indeed, ifx ; y 2 Rn

and we form the triangle whose vertices are the pointx; y and (x + y), then the length of x + y
will be less than the sum of the other two side angles. Equality will occur precisely whenx = cy
for somec 2 R.

Finally, one has ametric, which is a method for determining the distance between two vectors.
If x = ( x1; : : : ; xn ) and y = ( y1; : : : ; yn ) then the Euclidean metric is

d(x; y ) = kx � yk =

 
nX

i =1

(x i � yi )2

!

=
p

(x1 � y1)2 + � � � + ( xn � yn )2:

In R2, this exactly agrees with the usual distance formula.

14
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1.2 Structures onRn 1 The Topology of Rn

Proposition 1.16

Let x; y ; z 2 R3.

1. Symmetry: d(x; y ) = d(y ; x)

2. Non-degeneracy: d(x; y ) � 0 with equality if and only if x = y ,

3. Triangle Inequality: d(x; z) � d(x; y ) + d(y ; z).

All of these properties follow immediately from the properties of the norm and are left as an
exercise for the student. We will often omit the d(x; y ) notation as some students may �nd it
confusion, though this is typically how metrics are denoted in more abstract courses.

1.2.3 Cross product

In R3, the cross product of two vectors is a way of determining a third vector which is orthogonal
to the original two. It is de�ned as follows: If v = ( v1; v2; v3) and w = ( w1; w2; w3) then

v � w = ( v2w3 � w2v3; w1v3 � v1w3; v1w2 � w1v2):

This is rather terrible to remember though, so if the student is familiar with determinants, it can
be written as

v � w = det

0

@
{̂ |̂ k̂

v1 v2 v3

w1 w2 w3

1

A :

Here {̂; |̂; k̂ represent the standard unit vectors in R3, so that (a; b; c) = â{ + b̂| + ck̂.

x

y

x � y

Figure 6: The cross product of two vectorsx � y .

Example 1.17

If v = (1 ; 0; 1) and w = (1 ; 2; 3), determine v � w .

Solution. Using our de�nition, one has

(1; 0; 1) � (1; 2; 3) = det

0

@
{̂ |̂ k̂
1 0 1
1 2 3

1

A = ( � 2; � 2; 2)

c 2015 Tyler Holden
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1 The Topology of Rn 1.3 Open, Closed, and Everything in Between

As we mentioned, this new vector should be orthogonal to the other two. Computing the dot
products, we have

hv ; v � w i = (1 ; 0; 1) � (� 2; � 2; 2) = � 2 + 2 = 0

hw; v � w i = (1 ; 2; 3) � (� 2; � 2; 2) = � 2 � 4 + 6 = 0 �

Exercise:

1. Show that v � w = � w � v .

2. Show that hv ; v � w i = 0 in general.

3. Show that if w = � v for some� 2 R, then v � w = 0. Conclude that the cross product
of two vectors in R3 is non-zero if and only if the vectors are linearly independent.

1.3 Open, Closed, and Everything in Between

The goal of the next several sections is to discuss the notion oftopology, which is the coarse grained
geometry and structure of a space. In single variable calculus, one was exposed to the notions of
open intervals (a; b), closed intervals [a; b], and the knowledge that some intervals are neither open
nor closed. What motivates the nomenclature for these sets? Intuitively, the idea seems to be that
the set (a; b) does not contain its endpointsa and b: it contains points which are arbitrarily close,
but not those two speci�c points. A closed interval does contain its endpoints, it is closed o�.
Our goal is to extend this notion to Rn , where the addition of dimensions signi�cantly complicates
our picture. However, we can at least start somewhere nice, by de�ning the generalization of an
interval:

De�nition 1.18

Let x 2 Rn and r > 0 a real number. We de�ne the open ball of radiusr at the point x as

B r (x) := f y 2 Rn : kx � yk < r g:

Recalling that kx � yk is equivalent to the distance betweenx and y , the open ball B r (x) is
nothing more than the collection of points which are a distance at mostr from x. This indeed
generalizes the interval, since inR1 we have

B r (x) = f y 2 R : jx � yj < r g = ( x � r; x + r );

or if we centre around 0,B r (0) = ( � r; r ). In R2 we get a disk of radiusr ,

B r (0) =
n

(x; y) 2 R2 :
p

x2 + y2 � r
o

;

which we recognize as being the same asx2 + y2 � r 2.

De�nition 1.19

A set S � Rn is bounded if there exists anr > 0 such that S � B r (0).

16
c 2015 Tyler Holden



1.3 Open, Closed, and Everything in Between 1 The Topology ofRn

x r

B r (x)

Figure 7: The open ball of radiusr centred at x consists of all points which are a distancer from
x.

One hopes that this is fairly intuitive: A set is bounded if we can put a ball around it. If
we can place a ball around the set, it cannot grow arbitrarily large. For example, the setS =�

(x; y) 2 R2 : xy > 0
	

consists of the �rst and third quadrants of the plane. Since both x and
y can become arbitrarily large is absolute value, no ball centred at the origin entirely contains
S. On the other hand, C =

�
(x; y) 2 R2 : (x � a)2 + ( y � b)2 � r 2

	
is bounded for any choice of

a; b; c2 R.

Exercise: For an arbitrary choice of a; b; r 2 R, determine the open ball that bounds C as
de�ned above.

These balls will be our way of \looking around" a point; namely, if we know somethingB r (x)
then we know what is happening within a distancer of the point x. We can use these open balls
to de�ne di�erent types of points of interest:

De�nition 1.20

Let S � Rn be an arbitrary set.

1. We say that x 2 Rn is an interior point of S if there exists an r > 0 such that
B r (x) � S; that is, x is an interior point if we can enclose it in an open ball which is
entirely contained in S.

2. We say that x 2 Rn is a boundary point of S if for every r > 0, B r (x) \ S 6= ; and
B r (x) \ Sc 6= ; ; that is, x is a boundary point if no matter what ball we place around
x, that ball lives both inside and outside of S.

If S is a set, we de�ne the interior of S, denoted Sint to be the collection of interior points of
S. We de�ne the boundary of S, denoted @S, to be the collection of boundary points ofS.

We should take a moment and think about these de�nitions, and why they make sense. Let us
start with a boundary point. Intuitively, a boundary point is any point which occurs at the very
fringe of the set; that is, if I push a little further I will leave the set. An interior point should be
a point inside of S, such that if I move in any direction a su�ciently small distance, I stay within
the set. This is exactly what De�nition 1.20 is conveying. By de�nition, if x is an interior point
then we must have that x 2 S; however, boundary points do not need to be in the set. We start

c 2015 Tyler Holden
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1 The Topology of Rn 1.3 Open, Closed, and Everything in Between

b

p

S

Figure 8: The point b is a boundary point. No matter what size ball we place aroundb, that ball
will intersect both S and Sc. On the other hand, p is an interior point, since we can place a ball
around it which lives entirely within S.

with a silly example:

Example 1.21

Let S = ( � 1; 1]. What are the interior points and the boundary points of S?

Solution. We claim that any point in ( � 1; 1) is an interior point. To see that this is the case, let
p 2 (� 1; 1) be an arbitrary point. We need to place a ball around p which lives entirely within
(� 1; 1). To do this, assume without loss of generality that p � 0. If p = 0 then we can set r = 1

2
and B1=2(0) = ( � 1=2; 1=2) � (� 1; 1). Thus assume that p 6= 0 and let r = 1� p

2 , which represents
half the distance from p to 1.

We claim that B r (p) � (� 1; 1). Indeed, let x 2 B r (p) be any point, so that jx � pj < r by
de�nition. Then

jxj = jx � p + pj � j x � pj + p

� r + p =
1 � p

2
+ p

=
1 + p

2
< 1

where in the last inequality we have used the fact thatp < 1 so 1 + p < 2. Thus x 2 (� 1; 1), and
sincex was arbitrary, B r (p) � (� 1; 1).

The boundary points are � 1, where we note that even though� 1 =2 (� 1; 1], it is still a boundary
point. To see that +1 is a boundary point, let r > 0 be arbitrary, so that B r (p) = (1 � r; 1 + r ).
We then have

B r (p) \ (� 1; 1] = (1 � r; 1] 6= ; ; B r (p) \ (� 1; 1)c = (1 ; 1 + r ) 6= ; ;

as required. The proof for� 1 is analogous and left as an exercise. �
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Example 1.22

What is the boundary of Q in R?

Solution. We claim that @Q = R. Since both the irrationals and rationals are dense in the real
numbers, we know that every non-empty open interval inR contains both a rational and irrational
number. Thus let x 2 R be any real number, andr > 0 be arbitrary. The set B r (x) is an open
interval around x, and contains a rational number, showing that B r (x) \ Q 6= ; . Similarly, B r (x)
contains an irrational number, showing that B r (x) \ Qc 6= ; , so x 2 @Q. Sincex was arbitrary, we
conclude that @Q = R. �

Exercise: Show that it is impossible for a boundary point to also be an interior point, and
vice-versa.

De�nition 1.23

A set S � Rn is said to beopen if every point of S is an interior point; that is, S is open if
for every x 2 S there exists anr > 0 such that B r (x) � S. The set S is closed if Sc is open.

Example 1.24

The set S =
�

(x; y) 2 R2 : y > 0
	

is open.

Solution. We need to show that around every point in S we can place an open ball that remains
entirely within S. Choose a pointp = ( px ; py) 2 S, so that py > 0, and let r = py=2. Consider the
ball B r (p), which we claim lives entirely within S. To see that this is the case, choose any other
point q = ( qx ; qy) 2 B r (p). Now

jqy � py j � k q � pk < r =
py

2

which implies that qy > p y � py
2 = py

2 > 0. Sinceqy > 0 this shows that q 2 S, and sinceq was
arbitrary, B r (p) � S as required. �

S

p
q

r

py

Figure 9: The upper half plane is open. For any point, look at itsy-coordinate py and use the ball
of radius py=2.
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Example 1.25

Every open ball is open.

Solution. One certainly hopes that this result is true, otherwise the name would by quite the
misnomer. To show this, let x 2 Rn and r > 0 both be arbitrary, and consider S = B r (x). We
need to show that every point in S can in turn be enclosed with a smaller ball which lives entirely
within S. Choose somep 2 S and let d = kx � pk so that d < r be de�nition.

We claim that the ball of radius r 0 = ( r � d)=2 > 0 will work. To see this, choose an arbitrary
y 2 B r 0(p) so that kp � yk < r 0. One has that

kx � yk � k x � pk + kp � yk triangle inequality

� d + r 0 = d +
r � d

2
=

r + d
2

�
2r
2

< r sinced < r :

Sincey was arbitrary, B r 0(p) � B r (x) as required. �

x

d

p
y

r
�

d
r

0

Figure 10: A visualization of the solution to Example 1.25.

Proposition 1.26

A set S � Rn is closed if and only if @S� S.

Proof. [) ] Assume that S is closed, and for the sake of contradiction assume that@S* S. Choose
an elementx 2 @Swhich is not in S, so that x 2 Sc. Now sinceS is closed,Sc is open, so we can
�nd an � > 0 such that B � (x) � Sc. However, this is a contradiction: sincex 2 @Sthen every open
ball must intersect both S and Sc, and this shows that B � (x) is an open ball aroundx which fails
to intersect S. We thus conclude@S� S as required.

[( ] We will proceed by contrapositive, and show that if S is not closed, then@S6� S. If S is
not closed, then Sc is not open, and hence there is some pointx 2 Sc such that for every r > 0,

20
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B r (x) \ S 6= ; . Certainly B r (x) \ Sc 6= ; (since both sets containx) and hencex 2 @S. Thus x is
a point in @S\ Sc, and so@S6� S.

Just as in the case of intervals inR, it is possible for a set to be neither open nor closed. A
previous exercise showed that a point in a set cannot be both a boundary point and an interior
point, so failing to be open somehow amounts to containing some of your boundary points. If you
have all of your boundary points, Proposition 1.26 shows that you are actually closed. Thus sets
which fail to be both open or closed contain some of their boundary points, but not all of them.
By adding all the boundary points, we can \close o�" a set.

De�nition 1.27

If S � Rn then the closure ofS is the set S = S [ @S.

Exercise:

1. Show that S is always a closed set.

2. Show that S is closed if and only if S = S.

3. Show that S is the smallest closed set containingS.

The closure of an interval (a; b) is the closed interval [a; b]. The student should check that the
closure of the open ball inRn is

B r (x) = f y 2 Rn : kx � yk � r g

where we note that the inequality need no longer be strict. Similarly, the closure of the open half
plane in Example 1.24 is the closed half plane

f (x; y) 2 R2 : y > 0g =
�

(x; y) 2 R2 : y � 0
	

:

1.4 Sequences and Completeness

The student is already passingly familiar with the notion of sequences inR. We will quickly review
the pertinent points before introducing sequences inRn .

1.4.1 Sequences in R

The rough idea of a sequence is that it resembles an ordered collection of real numbers. We can
make this more formal by writing a sequence as a mapx : N ! R, so that x(n) is a real number.
For example, the sequencex(n) = n2 is such that

x(1) = 1 ; x(2) = 4 ; x(3) = 9 ; x(4) = 16 ; x(5) = 25 ; : : : :

For brevity of notation, one often writes xn instead of x(n), so that for example, x4 = 16. In
addition to this, we often choose to conate the function x itself with its (ordered) image in R, in
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which case we write the sequence as (xn )1
n=0 . When we are feeling particularly lazy, we will even

drop the indexing and just write ( xn ).

A subsequence is a method for extracting elements from a sequence, while keeping them in the
same order de�ned by the original sequence. In particular, given a sequencex : N ! R and an
increasing map n : N ! N, a subsequence is the sequence formed by the compositionx(n(k)),
which we often write as xnk . For example, if xn = n2 as above andn(k) = 2 k, then

xn1 = x2 = 4 ; xn2 = x4 = 16; xn3 = x6 = 36; xn4 = x8 = 64; : : :

This is the subsequence which picks out every other member of the original sequence:

x1

1

x2

4

x3

9

x4

16

x5

25

x6

36

x7

49

x8

64

x9

81

x10

100

xn1 xn2 xn3 xn4 xn5

Figure 11: The subsequencexnk picks out every other number from the sequence, and de�nes a
new sequence.

De�nition 1.28

Let (xn )1
n=1 be a sequence inR. We say that

1. (xn ) is bounded if there exists an M > 0 such that jxn j � M for every n 2 N,

2. (xn ) is increasing if xn+1 > x n for every n 2 N. Similarly, ( xn ) is decreasing if
xn+1 < x n for every n 2 N.

Example 1.29

Determine whether the sequence is increasing/decreasing or bounded:

1. xn = 1
n ,

2. yn = ( � 1)n

3. zn = 2 n .

Solution. 1. The sequencexn = 1
n is bounded and decreasing. SettingM = 1 we have jxn j =�

� 1
n

�
� � 1 sincen � 1. In addition, it is well known that xn+1 = 1

n+1 < 1
n = xn , so the sequence

is decreasing as required.

2. This sequence just oscillates between the numbers� 1, so it is certainly bounded (choose
M = 1). On the other hand, it is neither increasing nor decreasing, sincey2n > y 2n+1 but
also y2n+2 > y 2n+1 .

3. This sequence is increasing, sincezn+1 = 2 n+1 = 2zn > z n . However, the sequence is
unbounded. �
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We can talk about when such sequences converge, in a manner similar to horizontal asymptotes
of functions:

De�nition 1.30

If ( xn )1
n=1 is a sequence inR, we say that (xn ) converges with limitL, written as (xn ) n !1���! L ,

if for every � > 0 there exists anN 2 N such that whenevern > N , jxn � L j < � .

This de�nition says that by progressing su�ciently far into the sequence, we can ensure that
the xn get arbitrarily close to L .

Example 1.31

If xn = 1
n , show that (xn ) ! 0.

Solution. Let � > 0 be given, and choose anN 2 N such that 1
N < � . If n > N then

jxn � 0j =
1
n

<
1
N

< �

which is what we wanted to show. �

It seems intuitive to expect that the limit of a sequence should be unique, so that we may talk
about the limit of the sequence. We demonstrate this with the following proposition:

Proposition 1.32

If ( xn )1
n=1 is a sequence inR such that (xn ) ! x and (xn ) ! y then x = y; that is, limits of

convergent sequences are unique.

Proof. It is su�cient to show that for every � > 0 we havejx � yj < � . Indeed, this will show that
jx � yj cannot be positive, and so must necessarily be zero, from which it will follow thatx = y.

Let � > 0 be arbitrary. As (xn ) ! x there exists N1 2 N such that jxn � xj < �
2 . By the same

token, there exists N2 2 N such that jxn � yj < �
2 . Let N = max f N1; N2g and �x any n > N , so

that

jx � yj � j x � xn j + jxn � yj �
�
2

+
�
2

= �:

Our profound laziness as mathematicians means that if we can avoid doing more work, we will.
We can use the following proposition, akin to the limit laws for functions, to infer convergence of
sequences and their limits.
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Theorem 1.33: Limit Laws for Sequences

Let (an ) ! L and (bn ) ! M be convergent sequences.

1. The sequence (an + bn ) is convergent and (an + bn ) ! L + M ,

2. The sequence (anbn ) is convergent and (anbn ) ! LM ,

3. For any � 2 R the sequence (�a n ) converges and (�a n ) ! �L ,

4. If M 6= 0 then the sequence (an=bn ) converges and (an=bn ) ! L=M .

Proof. The proof of these are almost identical to those of the limit laws for functions. We will
prove (1) and leave the remainder as a (non-trivial) exercise:

Assume that (an ) ! L and (bn ) ! M . Let � > 0 be given and chooseM 1; M 2 2 N such that if
k � M 1 then jan � L j < �

2 and if k � M 2 then jbn � M j < �
2 . Let M = max f M 1; M 2g, so that if

k � M then

jan + bn � (L + M )j � j an � L j + jbn � M j <
�
2

+
�
2

= �:=qedhere

There is also a version of the Squeeze Theorem for sequences, again proven in almost an identical
fashion:

Theorem 1.34: Squeeze Theorem for Sequences

Let (an ); (bn ); and (cn ) be sequences inR, and assume that for su�ciently large k we have
an � bn � cn . If ( an ) ! L and (cn ) ! L , then (bn ) is also convergent with limit L .

We know from our previous experience that every convergent sequence is bounded (prove it
yourself!). A partial converse is the following:

Theorem 1.35: Monotone Convergence Theorem

If ( an ) is bounded from above and non-decreasing, then (an ) is convergent with its limit
given by supf an : n 2 Ng.

Proof. Let L = supn an , which we know exists by the completeness axiom. Let� > 0 be given. By
de�nition of the supremum, we know that there exists someM 2 N such that

L � � < a M � L:

Since (an ) is non-decreasing, we have that for allk � M

L � � < a M < a k � L < L + � ;

that is, jan � L j < � . Hence (an ) ! L as required.
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A similar argument shows that the theorem also holds if (an ) is bounded and non-increasing.

Example 1.36

Determine whether the sequencean = 2n

n! is convergent.

Solution. A quick computation shows that

an+1

an
=

2n+1

(n + 1)!
n!
2n =

2
n + 1

;

so that if n � 2 we havean+1 < a n and the sequence is decreasing. It is easy to see thatan is
always positive, hence bounded below by 0. By the Monotone Convergence Theorem we know that
(an ) converges. �

Proposition 1.37

If ( xn )1
n=1 ! x is a convergent sequence, then every subsequence (xnk ) is also convergent

with the same limit.

Proof. Let (xnk ) be any subsequence and note thatnk � k for all k (prove this). Let � > 0 be
given. Since (xn ) ! x there exists N 2 N such that if n > N then jxn � xj < � . This N will also
work for (xnk ), since if k > N then nk > n N > N , implying that jxnk � xj < � .

1.4.2 Sequences in Rm

With our rapid review of sequences inR, we can now begin considering sequences inRm . A
sequencein Rm is any function x : N ! Rm . Just like before, we will often write such as sequences
asxn := x(n). For example, the mapx(n) = ( n; n2 � 1) is a sequence inR2 whose �rst few elements
are given by

x1 = (1 ; 0); x2 = (2 ; 3); x3 = (3 ; 8); x4 = (4 ; 15); x5 = (5 ; 24); : : :

If n : N ! N then one can de�ne a subsequence byx(k(n)) = xkn . For example, if n(k) = 3 k � 1,
then

xk1 = (2 ; 3); xk2 = (5 ; 24); xk3 = (8 ; 63); xk4 = (11 ; 120); : : :
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Remark 1.38 Let (xn ) be a sequence inRm , and write xn = ( x1
n ; : : : ; xm

n ) 2 Rm . By
picking out the components, we can de�nem sequences inR by

�
xk

n

� 1
n=1 . If ( xn ` )

1
`=1 is a

subsequence, this de�nes subsequences (xk
n `

)1
`=1 (we are running out of letters!). However,

notice that the converse is certainly not true: One cannot take subsequences of each (xk
n )

and stitch them back together to get a subsequence of (xn ). For example, consider the
sequencexn = ( n; � n) in R2. This de�nes two sequences inR, one by xn = n and yn = � n.
Let's take the subsequence of (xn ) consisting of even indices, so thatxn r = 2n, and the
subsequence ofyn consisting of odd indicesyns = � (2n � 1).

xn1 = 2 ; xn2 = 4 ; xn3 = 6 ; xn4 = 8 ; : : :

yn1 = � 1; yn2 = � 3; yn3 = � 5; yn4 = � 7; : : :

There is no way of combining these individual subsequences to arrive at a subsequence of
(xn ).

Our interest lies principally with sequences which converge, for which the de�nition is almost
identical to the one for sequences inR:

De�nition 1.39

Let (xn )1
n=1 be a sequence inRn . We say that (xn ) converges with limit x 2 Rn , written

(xn ) ! x , if for every � > 0 there exists an N 2 N such that whenever n > N then
kxn � xk < � .

Exercise: Let (xn )1
n=1 be a sequence inRm and write xn = ( x1

n ; : : : ; xm
n ). Show that (xn )

converges if and only if (x i
n ) converges fori = 1 ; : : : ; m.

The corresponding theorems about uniqueness of limits, the limit laws, and the Squeeze The-
orem all hold in Rn as well asR, with the only e�ective change being that the absolute value j � j
becomes the normk�k. The student is encouraged to prove these in multiple dimensions to check
that they also work.

We may feel comfortable with the de�nition of convergent sequences, since it is only a slight
modi�cation of what we have seen repetitively in both this course and its prequel. However, with
our discussion of balls, we now have an opportunity to associate a strong geometric interpretation
to the idea of convergence. The conditionkxn � xk < � says that xn is in B � (x), so the de�nition
of convergence can equivalently be colloquialized by saying that (xn ) ! x if

\Every ball around x contains all but �nitely many points of the sequence."

Example 1.40

Show that the sequencexn = ( xn ; yn ) =
� 1

n ; 1
n2

�
! (0; 0).

26
c 2015 Tyler Holden



1.4 Sequences and Completeness 1 The Topology ofRn

x1 x2 x3 x4 x5 x
�

Solution. Let � > 0 be given, and chooseN such that 1
N < �p

2
. If n > N then

p
2

n <
p

2
N and

k(xn ; yn ) � (0; 0)k =

r
1
n2 +

1
n4 =

1
n

r

1 +
1
n2 �

p
2

n
1 +

1
n2 � 2

<

p
2

n
< �: �

One can use sequences to characterize the closure of a set, and hence determine whether or not
a set is closed. IfS � Rn , we say that (xn ) is a sequence inS if xn 2 S for every n 2 N. The
closure ofS is the collection of all limit points of convergent sequences inS:

Proposition 1.41

If S � Rn , then x 2 S if and only if there exists a convergent sequence (xn ) in S such that
(xn ) ! x .

Proof. [) ] Assume that x 2 S so that every ball around aroundx intersectsS. We need to construct
a sequence inS which converges tox. For eachn 2 N, choose an elementxn 2 B1=n(x) \ S, which
is non-empty by assumption (See Figure 12). By construction, the sequence (xn )1

n=1 is a sequence
in S, so we need only show that (xn ) ! x . Let � > 0 be given and chooseN such that 1

N < � .
When n > N we have 1

n < 1
N < � , and by construction xn 2 B1=n(x) � B � (x), or equivalently

kxn � xk <
1
n

< �:

[( ] Let (xn )1
n=1 be a convergent sequence inS with limit point x . If � > 0 is any arbitrary real

number, then there exists anN 2 N such that for all n > N we havexn 2 B � (x). Since xn 2 S,
this implies that B � (x) \ S 6= ; . Since� was arbitrary, x 2 S or x 2 @S. In either case,x 2 S.

Since we know that a setS is closed if and only if S = S, one immediately gets the following
Corollary.

Corollary 1.42

A set S � Rn is closed if and only if whenever (xn )1
n=1 is a convergent sequence inS with

(xn ) ! x , then x 2 S.
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x

x1

x2
x3

S

Figure 12: In the proof of Proposition 1.41, we need to construct a sequence which converges tox.
This is done by choosing points in successively smaller balls aroundx.

1.4.3 Completeness

Our goal in this section is to extract convergent subsequences from bounded sequences, in an
e�ort to facilitate our future discussion of compactness. We have already reviewed the Monotone
Convergence Theorem, from which the following (equivalent) Theorem follows:

Theorem 1.43: Nested Interval Theorem

For each k 2 N, let I k = [ ak ; bk ] be a closed interval such that

I 1 � I 2 � I 3 � I 4 � � � � � I k � � � �

is a nested collection of intervals, and (bk � ak ) k!1���! 0; that is, the length of the intervals
is getting smaller. Then the intersection of these intervals is non-empty, and in particular
consists of a single element, sayp. Notationally,

1\

k=1

I k = f pg:

Proof. Consider the sequences (ak )1
k=1 and (bk )1

k=1 de�ned by the endpoints of the intervals. Since
the intervals are contained within one another, (ak ) is monotone increasing, while (bk ) is monotone
decreasing. By the Monotone convergence theorem, both sequences converge. Moreover, since the
length of the subintervals approach zero, the sequences converge to the same point (prove this more
rigorously if you do not see it). Let this limit point be p, for which ak � p � bk for every k, showing
that

p 2
1\

k=1

I k :

Since the lengths of the intervals tend to zero, this is the only possible point in the intersection
(once again, provide a more rigorous proof of this fact).
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Theorem 1.44

Every bounded sequence inR has a convergent subsequence.

Proof. The idea of the proof will be to exploit Theorem 1.43 by successively bisecting the sequence
into two halves. This will lead to a chain of nested intervals, which must have a single point in
common. We will then construct a sequence which converges to this point.

More formally, let ( an )1
n=1 be a bounded sequence, andM > 0 be such that jan j � M for all

n 2 N. In particular, an 2 [� M; M ]. Consider the two halves [� M; 0] and [0; M ], one of which must
contain in�nitely many elements of the sequences. Call this interval I 1. We inductively construct
the closed interval I n as follows: Assume thatI n � 1 has been given, and splitI n into two halves. At
least one of these halves must contain in�nitely many elements of the set, so choose one and call it
I n .

By construction,
I 1 � I 2 � I 3 � � � � ;

and the length of the interval I k is M=2k � 1. Clearly, as k ! 1 the length of the subintervals tends
to 0, and as such the Nested Interval Theorem implies there exists a pointp which is contained in
every such interval.

We now construct a sequence which converges top. Let xk1 be any element of (xk ) which lives
in I 1. We construct xkn inductively as follows: Assume that xkn � 1 has been speci�ed. SinceI n

contains in�nitely many elements, there exists an element inI n which is further along the sequence
than xkn � 1 . Call this element xkn .

Finally, we show that (xkn ) ! p. Let � > 0 be given and chooseN 2 N such that M
2N � 1 < � . If

n > N then

jxkn � xj < (length of I n ) <
M

2n � 1 <
M

2N � 1 < �

as required.

We wish to extend this to discuss sequences inRn . Though it no longer makes sense to talk
about increasing or decreasing sequences (there is no natural way of orderingn-tuples), we can still
talk about when a sequence is bounded.

De�nition 1.45

A sequence (xn )1
n=1 in Rm is bounded if there existsM > 0 such that kxnk � M for every

n 2 N.

Proposition 1.46

Every bounded sequence inRn has a convergent subsequence.

Proof. We will give the explicit proof for n = 2, which contains all the important ideas, and
comment on how to generalize it afterwards. Letxn = ( xn ; yn ) be a bounded sequence inR2. Note
that jxn j � k xnk and so the sequences (xn ) and (yn ) are each bounded inR. It is very tempting to
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simply take a convergent subsequence of each, but the problem is that we cannot stitch them back
together (See Remark 1.38).

Instead, let (xnk ) be a convergent subsequence of (xn ), with limit say x. Using the same indices,
consider the subsequence (ynk ). This sequence does not necessarily converge, but it is bounded, so it
in turn has a convergent subsequence (ynk `

) ! y. We claim that the (sub)subsequence (xnk `
; ynk `

)
converges. We already know that (ynk `

) ! y. Furthermore, since (xnk `
) is a subsequence of (xnk ),

which we know is convergent, Proposition 1.37 implies that (xnk `
) ! x. By Exercise 1.4.2, since

each component converges, (xnk `
; ynk `

) converges, as required.

A very closely related notion of convergence is the notion of a Cauchy sequence.

De�nition 1.47

A sequence (xn )1
n=1 is said to beCauchy if for every � > 0 there exists aN 2 N such that if

n; k > N then kxn � xkk < � .

Cauchy sequences are precisely those sequences whose elements get closer together the further
we travel into the sequence. Indeed, if we translate the de�nition of a Cauchy sequence, it says

\By going far enough into a Cauchy sequence, we can ensure that any two elements are
as close together as we want."

The bene�t of Cauchy sequences is that they seem to encapsulate the basic behaviour of a convergent
sequence, but one does not need to knowa priori the limit itself. The following proposition con�rms
this suspicion.

Proposition 1.48

If ( xn )1
n=1 is a sequence inRn , then (xn ) is Cauchy if and only if (xn ) is convergent.

Solution. [( ] This is the easier of the two directions. Assume that (xn ) is convergent with limit
point x and let � > 0 be given. ChooseN 2 N such that if n > N then kxn � xk < �

2 . We claim
that this N works for the de�nition of a Cauchy sequence. Indeed, letk; n > N so that

kxk � xnk � k xk � xk + kxn � xk <
�
2

+
�
2

= �

as required.

[) ] Conversely, let us now assume that (xn ) is Cauchy. We will �rst show that ( xn ) is bounded.
Setting � = 1 there exists an N 2 N such that whenevern > N then kxn � xN k < 1, from which
it follows that

kxnk < kxn � xN k + kxN k = 1 + kxN k:

By setting M = max fk x1k; : : : ; kxN k; 1 + kxN kg then kxnk � M for all k 2 N.

By Proposition 1.46, (xn ) thus has a convergent subsequence (xnk ), say with limit point x . We
now claim that the original sequence actually convergesx as well. Indeed, let� > 0 be chosen, and
N1 2 N be such that for all k; ` > N 1 we havekxk � x `k < �

2 . Similarly, chooseK 2 N such that
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for all k > K we havekxnk � xk < �
2 . Fix an integer k > N 1 such that nk > K so that if n > K

we have

kxn � xk < kxn � xnk k + kxnk � xk <
�
2

+
�
2

= �: �

De�nition 1.49

We say that S � Rn is complete if every Cauchy sequence converges.

Proposition 1.48 implies that Rn is complete. We leave it as an exercise for the student to show
that S � Rn is complete if and only if S is closed.

1.5 Continuity

We pause our discussion of sequence for the moment (to be resumed quite shortly) to discuss the
notion of limits and continuity for functions of several variables. Let us briey recall the de�nitions
in a single variable, upon which we will generalize our discussion to multiple dimensions.

De�nition 1.50

Let f : R ! R with c; L 2 R. We say that lim
x ! c

f (x) = L if for every � > 0 there exists� > 0

such that whenever 0< jx � cj < � then jf (x) � L j < � .
We say that f is continuous at c if lim

x ! c
f (x) = f (c). If f is continuous at every point in its

domain, we simply say that f is continuous.

Continuity is a way of saying that the function behaves well under limits, or equivalently that
limits can be taken \inside" the function, since

lim
x ! c

f (x) = f
�

lim
x ! c

x
�

= f (c):

This idea that continuous functions permit one to interchange the function evaluation with the
limit will become more evident in a second. We presume that the student is still familiar with these
notions (albeit perhaps a bit rusty), so we will not explore them further at this time and instead
pass to multivariable functions.

Of particular interest will be functions of the form f : Rn ! R (though a similar conversation
holds for functions f : Rn ! Rm ). For functions of a single variable, the idea of a limit is that as
x gets arbitrarily close to c, the function value f (x) becomes arbitrarily close toL . These notions
were made formal by way of the absolute value, which measured distance:jx � cj is the distance
betweenx and c, while jf (x) � L j is the distance betweenf and L . In Rn we have adapted to use
the norm to measure distance, so it seems natural to replacejx � cj with kx � ck.
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De�nition 1.51

Let f : Rn ! Rm with c 2 Rn and L 2 Rm . We say that

lim
x ! c

f (x) = L

if for every � > 0 there exists a� > 0 such that whenever 0< kx � ck < � then kf (x) � Lk <
� .

Note that these are di�erent norms; the norm for kx � ck is the Rn norm, while the norm for
kf (x) � Lk is in Rm . The student is likely familiar with the unwieldy � -� approach to limits, and
we assure the reader that this situation is signi�cantly more exacerbated in multiple dimensions.

Example 1.52

Show that lim
(x;y )! (1;1)

(x + y) = 2.

Solution. Recall that in general, for any arbitrary ( a; b) 2 R2 one has

jaj �
p

a2 + b2; jbj �
p

a2 + b2 (1.1)

Let � > 0 be given and choose� = �
2 . Assume that (x; y) 2 R2 satisfy k(x; y) � (1; 1)k < � so that

j(x + y) � 2j = j(x � 1) + ( y � 1)j � j x � 1j + jy � 1j

�
p

(x � 1)2 + ( y � 1)2 +
p

(x � 1)2 + ( y � 1)2 by (1.1)

= 2k(x; y) � (1; 1)k < �: �

Example 1.53

Show that lim
(x;y )! (0;0)

xy
p

x2 + y2
= 0.

Solution. Let � > 0 be given and choose� = � . If ( x; y) 2 R2 satisfy k(x; y)k < � then
�
�
�
�
�

xy
p

x2 + y2
� 0

�
�
�
�
�

=
jxjjyj

p
x2 + y2

�

p
x2 + y2

p
x2 + y2

p
x2 + y2

=
p

x2 + y2 = k(x; y)k < �: �

Example 1.54

Let f : R2 ! R3 be given by (x; y) 7! (x; x + y; x � y). Show that

lim
(x;y )! (1;0)

f (x; y) = (1 ; 1; 1):
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Solution. Let � > 0 be given and choose� =
�

p
3

. Notice that

k(x � 1; x + y � 1; x � y � 1)k2 = ( x � 1)2 + ( x + y � 1)2 + ( x � y � 1)2

= ( x � 1)2 +
�
(x � 1)2 + 2( x � 1)y + y2�

+
�
(x � 1)2 � 2(x � 1)y + y2�

= 3( x � 1)2 + 2y2 � 3
�
(x � 1)2 + y2�

= 3k(x � 1; y)k2

and as such
kf (x) � Lk �

p
3kx � (1; 0)k < �: �

Recall that

lim
x ! c

f (x) exists , lim
x ! c+

f (x) exists and lim
x ! c�

f (x) exists:

This represents the fact that the limit exists if and only if the limit is the same regardless of which
path I take to get to c. The problem in Rn is much more di�cult, since even in R2 the number
of ways in which a limit can be approached is in�nite. In Example 1.53 we took the limit as
(x; y) ! (0; 0). We can approach the origin (0; 0) along the x-axis, the y-axis, or along any line in
R2 (see Figure 13). In fact, one need not even approach along lines, you can approach along any
path in R2 that leads to the origin. For the limit to exist overall, the limit along every possible
path to the origin must exists, and they must all be equal.

x

y

Figure 13: Even in R2, there are in�nitely many ways of approaching a point. For a limit to exist,
the limit along each path must exist and must be equal to that achieved from every other path.

Example 1.55

Show that the limit lim
(x;y )! (0;0)

x2y2

x4 + y4 does not exist.

Solution. Let us approach the origin along the straight linesy = mx, where m 2 R is arbitrary. If
the limit exists, it must be the same regardless of our choice ofm. Let f (x; y) = x2y2

x4+ y4 , and note
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that the path y = mx can be written pairwise as (x; mx ), and so

lim
x ! 0

f (x; mx ) = lim
x ! 0

x2(mx)2

x4 + ( mx)4 = lim
x ! 0

m2x4

x4 + m4x4

= lim
x ! 0

m2x4

(m4 + 1) x4 = lim
x ! 0

m2

m4 + 1

=
m2

m4 + 1
:

This limit clearly depends upon the choice of m, and so we conclude that the limit does not
exist. �

The inquisitive reader might suspect that it is only straight lines that pose problems. For
example, could it be the case that if the function exists along every liney = mx then the limit can
be guaranteed to exist? The following examples shows that this is note the case:

Example 1.56

Show that the function f (x; y) = 2xy 2

x2+ y4 admits a limit along every line y = mx, but fails
along the parabolax = my2.

Solution. Proceeding as suggested, we take the limit along the linesy = mx:

lim
x ! 0

f (x; mx ) = lim
x ! 0

2x(mx)2

x2 + ( mx)4 = lim
x ! 0

2m2x3

x2 + m4x4 = lim
x ! 0

2mx
1 + m4x2 = 0

On the other hand, along the line x = my2 we get

lim
y! 0

f (my2; y) = lim
y! 0

2(my2)y2

(my2)2 + y4 = lim
y! 0

2my4

m2y4 + y4 = lim
y! 0

2m
m2 + 1

=
2m

m2 + 1

and this clearly depends onm. We conclude that the limit does not exist. �

Things seem rather hopeless: The� -� de�nition is tricky to work with, and the above examples
show that we cannot even limits be evaluating along typical paths. What progress can we possibly
make? Our salvation lies with the fact that the Squeeze Theorem also holds for functionsf : Rn !
R.

Theorem 1.57: Multivariable Squeeze Theorem

Let f; g; h : Rn ! R be functions and c 2 Rn . Assume that in some neighbourhood ofc,
such that f (x) � g(x) � h(x) for all x in that neighbourhood. If

lim
x ! c

f (x) = lim
x ! c

g(x) = L; then lim
x ! c

g(x) = L:

The proof is identical to that of the single variable squeeze theorem, so we leave it as an exercise.

34
c 2015 Tyler Holden



1.5 Continuity 1 The Topology of Rn

Example 1.58

Show that lim
(x;y )! (0;0)

3x2y2

x2 + y2 = 0 :

Solution. Note that y2 � x2 + y2, and so for (x; y) 6= (0 ; 0),

0 �
3x2y2

x2 + y2 �
3x2(x2 + y2)

x2 + y2 = 3x2:

In the limit as ( x; y) ! (0; 0) the bounding functions both tend to zero, so by the Squeeze Theorem
we conclude

lim
(x;y )! (0;0)

3x2y2

x2 + y2 = 0 : �

Example 1.59

Determine the limit lim
(x;y )! (0;0)

y4 sin2(xy)
x2 + y2 .

Solution. Taking absolute values and using the fact thatj sin(xy)j � 1 and y2 � x2 + y2 we get

0 �

�
�
�
�
y4 sin2(xy)

x2 + y2

�
�
�
� �

y4

x2 + y2 �
y2(x2 + y2)
(x2 + y2)

= y2:

As both sides tend to zero as (x; y) ! (0; 0) we conclude that

lim
(x;y )! (0;0)

�
�
�
�
y2 sin2(xy)

x2 + y2

�
�
�
� = 0

from which the limit follows. 3 �

Now that we have tools for discussing limits, we can move onto the notion of continuity, which
in a multivariable context is nearly identical to the single variable de�nition.

De�nition 1.60

A function f : Rn ! Rm is continuous at c 2 Rn if

lim
x ! c

f (x) = f (c):

If f is continuous at every point in its domain, we just say that f is continuous.

For example, the function f (x; y) = y4 sin2 (xy )
x2+ y2 from Example 1.59 is unde�ned at (0; 0), but if

we de�ne

g(x; y) =

(
y4 sin2 (xy )

x2+ y2 ; if x 6= 0

0; if ( x; y) = (0 ; 0)

3Recall that �j f (x )j � f (x ) � j f (x )j, so if jf (x ) j x ! c���! 0, the Squeeze Theorem implies that f (x ) x ! c���! 0.
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1 The Topology of Rn 1.5 Continuity

then g is a continuous function.

It turns that there are (at least) two other equivalent notions of continuity, which will prove
invaluable tools for studying topology.

Theorem 1.61

A function f : Rn ! Rm is continuous if and only if whenever (an )1
n=1 ! a is a convergent

sequence inRn , then (f (an ))1
n=1 ! f (a) is a convergent sequence inRm .

(� � � )

� �

�

Figure 14: If (an ) ! a, then by going far enough into our sequence (blue) we can guarantee that
we will be in � -neighbourhood ofa. The image of these points are thef (an ) (brown), which live in
the desired � -neighbourhood because of the continuity off .

Proof. [) ] Assume that f is continuous, and let (an ) ! a. We want to show that ( f (an )) ! f (a).
Let � > 0 be given. Sincef is continuous, there exists a� > 0 such that for each x satisfying
kx � ak < � we havekf (x) � f (a)k < � . Since (an ) is convergent, there exists anN 2 N such that
for all n � N we havekan � ak < � . Combining these, we see that whenevern � N we have

kan � ak < �; and sokf (an ) � f (a)k < �:

which is exactly what we want to show.

[( ] Conversely, assume thatf is not continuous, say at c. Hence there exists an� > 0 such
that for any � > 0 there is an x such that kx � ck < � and kf (x) � f (c)k � � . For each � n = 1

n ,
choose an elementxn satisfying kxn � ck < � n and kf (xn ) � f (c)k � � . Then (xn ) ! c but f (xn )
does not converge tof (c).

Theorem 1.61 shows that a function is continuous if and only if it it maps convergent sequences
to convergent sequences. This is precisely what we mean when we say that we can interchange a
function with the limit, since if ( xn ) ! a then

lim
n !1

f (xn ) = f
�

lim
n !1

xn

�
= f (a):
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1.5 Continuity 1 The Topology of Rn

The other equivalent de�nition of continuity is more topological in nature:

Theorem 1.62

A function f : Rn ! Rm is continuous if and only if wheneverU � Rm is an open set, then
f � 1(U) � Rn is also an open set.

Proof. [) ] Assume that f is continuous and letU � Rm be an open set. Letx 2 f � 1(U) be arbitrary
and considerf (x) 2 U. SinceU is open, there exists and� > 0 such that B � (f (x)) � U, and since
f is continuous, let � > 0 be the choice of delta which corresponds to this epsilon. We claim that
B � (x) � f � 1(U). Indeed, let y 2 B � (x) so that kx � yk < � . By continuity, kf (x) � f (y )k < �
which shows that f (y ) 2 B � (f (x)) � U, thus y 2 f � 1(U) as required.

x

B � (x)

f � 1(U)

B � (f (x))

f (x)

Uf

Figure 15: To show that the pre-image of open sets is open, we use the fact that the condition
kf (x) � f (y )k < � is exactly the same thing as looking at an� -ball around f (x).

[( ] Assume that the preimage of open sets is open, for which we want to show thatf is
continuous, say at x. Let � > 0 be given, and setU = B � (f (x)). Certainly we have x 2 f � 1(U),
and since this is an open set by assumption, there exists a� > 0 such that B � (x) � f � 1(U). We
claim that this choice of delta will satisfy the continuity requirement. Indeed, let y be a point such
that kx � yk < � ; that is, y 2 B � (x). Since B � (x) � f � 1(U) we know that f (y ) 2 f (B � (x)) � U =
B � (f (x)); that is, kf (y ) � f (x)k < � , as required.

Example 1.63

Show that the set S = f (x; y) : y > 0g � R2 is open.

Solution. This is the same set as in Example 1.24, wherein we showed thatS was open by
constructing an open ball around every point. Consider the function f : R2 ! R given by
f (x; y) = y. The student can convince him/herself that this function is continuous, and more-
over, that S = f � 1((0; 1 )). Since (0; 1 ) is open in R and f is continuous, it follows that S is open
as well. �
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1 The Topology of Rn 1.6 Compactness

Exercise: Show that f : Rn ! Rm is continuous if and only if wheneverV � Rm is closed
then f � 1(V ) is closed.

Many of the theorems about continuous functions in a single variable carry over to multiple
dimensions, for example

Theorem 1.64

If f : Rn ! Rm is continuous at c and g : Rm ! Rk is continuous at f (c), then g� f : Rn ! Rk

is continuous at c.

This is a simple theorem to prove, so it is left as an exercise for the student. It is straightforward
to show that the functions x � y, and xy are continuous, which immediately imply that the sum
and product of continuous functions is also continuous.

1.6 Compactness

In our study of calculus on R, there is a very real sense in which the sets [a; b] are the best
behaved: They are closed, which means we need to not worry about the distinction between
in�mum/supremum and minimum/maximum, and they are bounded so need not worry about
wandering o� to in�nity. In fact, one might recall that the Extreme Value Theorem was stated for
an interval of this type.

We have since explored the notions of closed and boundedness in multiple dimensions, and once
again it seems as though the same bene�ts a�orded in the single variable case also extend toRn .
We give such sets a very special name:

De�nition 1.65

A set S � Rn is compact if it is both closed and bounded.

Example 1.66

1. As mentioned, the interval [a; b] � R is compact. More generally, any closed ball
B r (x) � Rn is compact.

2. As �nite unions of closed and bounded sets are closed and bounded, the �nite union
of compacts sets is compact.

3. The set consisting of a single point is compact. By the previous example, every �nite
set is also compact.

4. Rn is not compact. While it is closed, it is certainly not bounded.

5. The rationals Q � R are neither closed nor bounded, and hence are not compact.
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1.6 Compactness 1 The Topology ofRn

Exercise: Prove property (2); that is, show that a �nite union of compact sets is still com-
pact. Give an example to show that the result is not true if we allow in�nite unions.

It turns out that this de�nition, while convenient conceptually, does not lend itself to proving
results about compact sets. Nor does it generalize to more abstract spaces. As such, we have the
following two equivalent de�nitions of compactness:

Theorem 1.67

If S � Rn then the following are equivalent:

1. S is compact,

2. [Bolzano-Weierstrass ] Every sequence inS has a convergent subsequence; that is,
if ( xn )1

n=1 � S, then there exists a subsequence (xkn ) and a point x 2 S such that
(xkn ) ! x .

3. [Heine-Borel ] Every open cover ofS admits a �nite subcover; that is, if f Ui gi 2 I is a
collection of open sets such thatS �

S
i 2 I Ui , then there exists a �nite subset J � I

such that S �
S

i 2 J Ui .

Proof. This is typically stated as two separate theorems: The Heine-Borel Theorem and the
Bolzano-Weierstrass Theorem, in which one shows that each of the corresponding alternate de�ni-
tions are equivalent to closed and bounded. We will only prove Bolzano-Weierstrass, as Heine-Borel
is more complicated.

[(1) ) (2)] Suppose that S is closed and bounded, and let (xn )1
n=1 � S. Since S is bounded, so

too is (xn ), in which case Theorem 1.44 implies there exists a convergent subsequence (xnk ) ! x .
A priori , we only know that x 2 Rn , but since S is closed, by Corollary 1.42 we know thatx 2 S.
Thus (xnk ) is a convergent subsequence.

[(2) ) (1)] We will proceed by contrapositive. Assume therefore thatS is either not closed or not
bounded.

If S is not closed, there existsx 2 S nS. By Corollary 1.42 there exists a sequence (xn )1
n=1 � S

such that (xn ) ! x : Since (xn ) converges, by Proposition 1.37 every subsequence also converges,
and to the same limit point. Thus ( xn ) is a sequence inS with no convergent subsequence inS.

Now assume that S is not bounded. One can easily construct a sequence (xn ) such that
kxnk n !1���! 1 . Necessarily, any subsequence ofxn also satis�es this property, and so (xn ) has no
convergent subsequence.

Remark 1.68 There are many more equivalent de�nitions of compactness, some of which
are equivalent, depending on the more general topological context. In general, none of
these de�nitions are actually equivalent. The statement corresponding to Heine-Borel is the
\true" de�nition of compactness, though it is sometimes known as quasi-compactness, while
the Bolzano-Weierstrass de�nition is referred to assequential compactness.
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1 The Topology of Rn 1.6 Compactness

One of the more potent results about compact sets is the following theorem

Theorem 1.69

Let f : Rn ! Rm be a continuous function. If K � Rn is compact, thenf (K ) is also compact.
More concisely, the continuous image of compact sets is compact.

Proof. We will proceed via the Bolzano-Weierstrass theorem. Consider a sequence (yn )1
n=1 in f (K ),

for which our intent is to �nd a convergent subsequence. By de�nition of f (K ), for each yn there
exists anxn 2 K such that yn = f (xn ), and hence we can de�ne a sequence (xn ) in K . SinceK is
compact, there exists a convergent subsequence (xnk ) ! x , with x 2 K .

We claim that the corresponding subsequence (ynk ) converges tof (x). Indeed, sincef is con-
tinuous, we know that

lim
k!1

f (xnk ) = f
�

lim
k!1

xnk

�
= f (x)

and sincex 2 K , we know f (x) 2 f (K ). Thus (ynk ) is a convergent subsequence inf (K ), and we
conclude that f (K ) is compact.

K

x2

x4
x6x8x12

x1 x3

x5x7

f (K )

y2

y4

y6
y8

y12

y1

y3

y5

y7

f

Figure 16: Proof of Theorem 1.69. We start with a random sequence (yn ) in f (K ) and look at the
points (xn ) in K which map to (yn ). We choose a convergent subsequence (xnk ) (green), and use
that subsequence to de�ne a convergent sequence (ynk ) (green) in f (K ).

Exercise: Prove Theorem 1.69 using the Heine-Borel Theorem.

This now immediately implies a familiar theorem from single variable calculus:
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1.7 Connectedness 1 The Topology ofRn

Corollary 1.70: Extreme Value Theorem

If f : Rn ! R is a continuous function and K � Rn is a compact set, then there exists
xmin ; xmax 2 K such that for every x 2 K; f (xmin ) � f (x) � f (xmax ); that is, f achieves
both its extreme values onK .

Proof. Since f is continuous andK is compact, by Theorem 1.69 we know thatf (K ) is compact,
and as such is both closed and bounded. Sincef (K ) � R, the completeness axiom implies that
supf (K ) and inf f (K ) both exist. Since f (K ) is closed, the supremum and in�mum are actually
in f (K ), so there exist xmin ; xmax 2 K such that

f (xmin ) = inf f (K ); f (xmax ) = sup f (K );

and by de�nition of inf and sup, for every x 2 K

f (xmin ) = inf f (K ) � f (x) � supf (K ) = f (xmax )

as required.

1.7 Connectedness

Connectedness is an expansive and important topic, but one which is also quite subtle. The \true
de�nition" embodies pathological cases which we will not be of concern in the majority of our work,
and so it is more intuitive to introduce a weaker notion known as path connectedness.

Intuitively, we would like something to be connected if it cannot be decomposed into two
separate pieces. Hence we might say that a setS is not connected if there existS1; S2 such that
S = S1 [ S2 and S1 \ S2 = ; . This latter condition is important to guarantee that the two sets do
not overlap. Unfortunately, this condition does not actually capture the idea we are trying convey.

For example, one expects that the intervalS = (0 ; 2) should be connected: it looks like all one
piece. Nonetheless, we can write (0; 2) = (0 ; 1) [ [1; 2), so that if S1 = (0 ; 1) and S2 = [1 ; 2) then
S = S1 [ S2 and S1 \ S2 = ; .

The remedy is to enforce a condition on the closure of each set; namely, thatS1 \ S2 = ; and
S1 \ S2 = ; . Ensuring that these intersections are empty ensures that our sets are far enough apart.

De�nition 1.71

A set S � Rn is said to bedisconnected if there exist non-empty S1; S2 � S such that

1. S = S1 [ S2,

2. S1 \ S2 = ; and S1 \ S2 = ; .

We refer to (S1; S2) as a disconnection of S. If S admits no disconnection, we say thatS is
connected.

This de�nition is such that it is much easier to show that a set is disconnected rather than
connected, since to show that a set is connected we must then show that there is no disconnection
amongst all possible candidates.
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1 The Topology of Rn 1.7 Connectedness

Example 1.72

Show that the following sets are not connected:

1. S = [0 ; 1] [ [2; 3] � R,

2. Q � R,

3. T =
�

(x; y) 2 R2 : y 6= x
	

.

Solution.

1. The disconnection for this case is evident: by settingS1 = [0 ; 1] and S2 = [2 ; 3], all conditions
are satis�ed. Hence (S1; S2) is a disconnection ofS.

2. This example requires us to think more carefully. We know that � 2 Q is irrational, so
considerS1 = Q \ (�1 ; � ) and S2 = Q \ (�; 1 ). Clearly S1 [ S2 = Q \ (R n f � g) = Q, while

S1 \ S2 = ( �1 ; � ] \ (�; 1 ) = ; :

Similarly, S1 \ S2 = ; . Thus (S1; S2) does indeed form a disconnection ofQ. �

3. Our setT looks like the plane with the line y = x removed. Since the liney = x somehow splits
the space, one might be unsurprised that this set is disconnected. LetS1 = f (x; y) : y > x g
and S2 = f (x; y) : y < x g, so that T = S1 [ S2. Furthermore,

S1 \ S2 = f (x; y) : y � xg \ f (x; y) : y < x g = ; :

Similarly, S1 \ S2 = ; , and so (S1; S2) is a disconnection ofT.

Remark 1.73 Examples (2) and (3) above show that the elements of the disconnection
can be arbitrarily close to one another yet still form a disconnection.

Proposition 1.74

A set S � R is connected if and only if S is an interval.

Despite the simplicity of the statement, the proof of this result is non-trivial. It can be found
in the textbook, so we leave it as an exercise for the interested student.

So in general, it seems that proving that a set is connected can prove quite bothersome. An
excellent tool for proving connectedness will be the following weaker de�nition:

De�nition 1.75

If S � Rn then a path in S is any continuous map  : [0; 1] ! S. We say that S is path-
connected if for every two points a; b 2 S there exists a path : [0; 1] ! S such that  (0) = a
and  (1) = b.
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1.7 Connectedness 1 The Topology ofRn

Intuitively, a set is path connected if between any two points in our set, we can draw a line
between those two points which never leaves the set.

Example 1.76

Show that every interval [a; b] � R is path connected.

Solution. Let c; d 2 [a; b] be arbitrary, and de�ne the map  : [0; 1] ! [a; b] by  (t) = td + (1 � t)c.
One can easily check that is continuous, and  (0) = c,  (1) = d. We conclude that [a; b] is path
connected. �

Naturally, the solution above would also work for (half) open intervals. We invite the student
to compare this proof to the one for Proposition 1.74, to see the di�erence in complexity required
to show that a set is connected as compared to path connected.

Example 1.77

Show that the set S =
�

(x; y) 2 R2 : x 6= 0
	

[ f (0; 0)g is path-connected.

Solution. Consider Figure 17 which suggests how we might proceed. If the two components lie in
the same half of the plane, we can connected them with a straight line. If they lie in separate halves
of the plane, we can connected them with lines that must �rst go through the origin.

a

b1

b2

� (t)

 1(t)
 2(t)

Figure 17: If a and b1 lie in the same plane, we can connect them with a straight line. Ifa and b2

lie in separate planes, we can connect them with a line through the origin.

Choose two pointsa = ( a1; a2); b = ( b1; b2) 2 S. Our �rst case will be to assume that both a
and b lie in the same half of the plane. Without loss of generality, assume thata1; b1 > 0. De�ne
the path

� (t) = at + (1 � t)b = ( a1t + (1 � t)b1; a2t + (1 � t)b2):

Sincea1 and b1 are both positive, the x-coordinate of the path a2t +(1 � t)b2 is also always positive.
Thus � is a path entirely in S.
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For our other case, assume then thata1 < 0 and b1 > 0. Consider the two paths 1(t) = a(1� t)
and  2(t) = bt, both of which are paths from their respective points to the origin, which remain
entirely within S. By concatenating these paths, we can de�ne a new path

 (t) =

(
 1(2t) t 2 [0; 1=2]

 2(2t � 1) t 2 [1=2; 1]
:

It is easy to check that  is continuous,  (0) = a and  (1) = b. As each constituent path lies
entirely within S, so too does the concatenated path, as required. We conclude thatS is path
connected. �

Theorem 1.78

The continuous image of a (path) connected set is (path) connected. More precisely, if
f : Rn ! Rm is continuous andS � Rn is (path) connected, then f (S) is (path) connected.

Proof. We will show the (much simpler) proof when S is path connected, and leave the connected
case as an exercise.

Assume then that S is path connected, and considerf (S). Let a; b 2 f (S) be any two points,
and choosex; y 2 S such that f (x) = a and f (y ) = b. SinceS is path connected, there is a path
 : [0; 1] ! S such that  (0) = x and  (1) = y . We claim that f �  : [0; 1] ! f (S) is a path in
f (S) connecting a and b. Indeed, since and f are both continuous their composition f �  is also
continuous. Evaluating the endpoints, we have

(f �  )(0) = f ( (0)) = f (x) = a; (f �  )(1) = f ( (1)) = f (y ) = b

so (f �  ) is a path connecting a and b as required.

Corollary 1.79: Intermediate Value Theorem

Let V � Rn be a (path) connected set andf : Rn ! R be a continuous function. Leta; b 2 V
and assume that f (a) < f (b). Then for every c such that f (a) < c < f (b) there exists an
x 2 V such that f (x) = c.

Proof. Regardless of whether we allowV to be connected or path connected, we know that the
image f (V ) is an interval. Since f (a); f (b) 2 f (V ) then [f (a); f (b)] � f (V ), and the result
follows.

I have mentioned that path connectedness is a strictly weaker notion of connectedness; that
is, any path connected set is necessarily connected, but the converse need not be true. This is
demonstrated by the following proposition and the example thereafter.

Proposition 1.80

Any set which is path connected is also connected.
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Proof. We will proceed by contradiction. Assume then that S � Rn is path connected but not
connected, so there exists a disconnection (S1; S2). Choosea 2 S1 and b 2 S2 and let  : [0; 1] ! S
be a path from a to b. Since  is continuous, P =  ([0; 1]) is necessarily connected. On the other
hand, let P1 = P \ S1 and P2 = P \ S2, so that P1 [ P2 = ( S1 [ S2) \ P = P, while

P1 \ P2 = ( P \ S1) \ S2 � S1 \ S2 = ; ;

implies that P1 \ P2 = ; . Similarly, P1 \ P2 = ; , showing that (P1; P2) is a disconnection ofP,
which is a contradiction. We conclude that S is connected.

To see that connected does not imply path connected, consider the following set, known as the
Topologist’s Sine Curve: ��

x; sin
�

1
x

��
: x 2 R n f 0g

�
[ (0; 0):

It is possible to show that this set is connected (convince yourself of this) but not path connected
(also convince yourself of this). Thus path connectedness is not equivalent to connectedness. A
partial converse is given by the following:

Proposition 1.81

If S � Rn is connected and open, thenS is path-connected.

1.8 Uniform Continuity

Stronger than continuity, there is a notion of uniform continuity, which plays nicer with Cauchy
sequences than a simple continuous function. The idea is as follows: If we write out the� -� de�nition
of continuity, in full quanti�ers, we get

8� > 0; 8x 2 D; 9� > 0; 8y 2 D; jx � y j < � ) j f (x) � f (y )j < �:

The fact that the delta is speci�ed after both the � and the point x means that � (�; x) is a function
of both these terms; that is, changing either� or the point x will change the necessary value of� .
This is perhaps unsurprising, since the choice of� really corresponds to how quickly the function
is growing at a point (See Figure 18).

The idea of uniform continuity is that given a �xed � > 0, one can �nd a � which works for
every point x.

De�nition 1.82

Let D � Rn and f : D ! Rm . We say that f is uniformly continuous if for every � > 0, there
exists a � > 0 such that for every x; y 2 D satisfying kx � yk < � then kf (x) � f (y )k < � .

As stated, the de�nition of uniform continuity implies that � only depends upon the choice of� ,
not on the particular point that we choose. Intuitively, uniformly continuous function are in some
sense bounded in how quickly they are permitted to grow.
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� 1

x1

� 2

x2

� 3

x3 x

�

Figure 18: For a �xed � > 0, the value of � depends on the choice of the pointx. In fact, the faster
a function grows at a point, the smaller the corresponding� will be.

Example 1.83

The function f : R ! R given by f (x) = 2 x + 5 is uniformly continuous.

Solution. Let � > 0 and choose� = �
2 . Let x; y 2 R be any points such that jx � yj < � , and notice

that
jf (x) � f (y)j = j(2x + 5) � (2y + 5) j = 2 jx � yj < 2� = �: �

The domain is an exceptionally important piece of information when determining uniform con-
tinuity, as the following example shows.

Example 1.84

Let f : R ! R; x 7! x2 and g : [� 2; 2] ! R; x 7! x2. Show that g is uniformly continuous
but f is not uniformly continuous.

Solution. Let � > 0 and choose� = �
4 . Let x; y 2 R be such that jx � yj < � . Sincex; y 2 [� 2; 2]

we know that � 2 < x; y < 2 so

jx + yj < jxj + jyj < 2 + 2 = 4 :

and moreover
jf (x) � f (y)j = jx2 � y2j = jx + yjjx � yj < 4jx � yj < 4� = �

as required. On the other hand, suppose for the sake of contradiction thatf is uniformly continuous.
Let � = 1 and choose the� > 0 guaranteed by uniform continuity. Choosex 2 R such that jxj > 1=� ,
and set y = x + �=2. Clearly jx � yj < � , but

�
�
�
�
�
x2 �

�
x +

�
2

� 2
�
�
�
�
�

=
�
� �x + � 2

�
� � � jxj > 1 = �
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which is a contradiction. �

Notice that the proof for why f fails to be uniformly continuous cannot be applied tog, precisely
becauseg is only de�ned on the interval [ � 2; 2] and as such, we cannot guarantee there exists an
x such that jxj > 1=� .

So far, our examples have been limited to those functionR ! R, and naturally the situation
becomes more complicated in higher dimensions. Luckily, with the use of compactness, we can
prove the following theorem:

Theorem 1.85

If D � Rn is a compact set andf : D ! Rm is continuous, then f is uniformly continuous.
More concisely, continuous functions with compact domain are uniformly continuous.

Proof. The proof of this theorem is particularly slick using the Heine-Borel theorem, but as our
characterization of compactness has been principally the Bolzano-Weierstrass theorem, we will
proceed with that.

Assume, for the sake of contradiction, thatf is not uniformly continuous; that is, there exists an
� > 0 such that for all � > 0 we can �nd a pair x ; y 2 D such that kx � yk < � and kf (x) � f (y )k �
� . Let � > 0 be as given, and for eachn 2 N let � n = 1

n . De�ne xn ; yn to be the pair such that
kxn � ynk < � n and kf (xn ) � f (yn )k � � .

The sequence (xn )1
n=1 is a sequence in the compact setD , and so by Bolzano-Weierstrass, it

has a convergent subsequence (xnk ) ! x . Sincekxn � ynk n !1���! 0, one can show that (ynk ) ! x
as well. Sincef is continuous,

lim
k!1

[f (xnk ) � f (ynk )] = f (x) � f (x) = 0

which contradicts the fact that kf (xn ) � f (yn )k � � .

Exercise: Prove the above theorem using the open covering version of compactness.

This allows us to immediately deduce that some functions are uniformly continuous, with-
out having to go through the trouble of proving the � -� version. For example, the function
f (x; y) =

p
sin(x) + cos2(y), de�ned on B1(0) is uniformly continuous by virtue of the fact that f

is continuous andB1(0) is compact.
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2 Di�erential Calculus

2.1 Derivatives

2.1.1 Single Variable: R ! R

Recall that if f : R ! R we say that f is di�erentiable at a point a 2 R if

lim
h! 0

f (a + h) � f (a)
h

exists;

and moreover, when the limit exists we denote it byf 0(a).

It turns out that this paradigm may not be the most pragmatic when dealing with functions
from Rn ! Rm , so we take a moment to re-introduce the topic with a view which is more amenable
to our future discussion.

The idea is that a function f is di�erentiable at a if it can be well-approximated by a linear
function su�ciently close to a. In particular, if h is su�ciently small, one would hope that there
exists an m such that

f (a + h) = f (a) + mh + error( h) (2.1)

where error(h) is the corresponding error in the linear approximation. For the approximation to
be good, the error should go to zero faster than linearly inh; that is,

lim
h! 0

error(h)
h

= 0 :

This leads us to the following equivalent de�nition of di�erentiability:

De�nition 2.1

A function f : R ! R is di�erentiable at a 2 R if there exists an m 2 R such that

lim
h! 0

f (a + h) � f (a) � mh
h

= 0 :

One can manipulate (2.1) to show that m = f 0(a) under the usual de�nition. Of course,
everything we know about single variable calculus is still true: The product rule, the chain rule,
our theorems regarding di�erentiability. We will not replicate the list here, for it is too large and
the student should be well familiar with it.

2.1.2 Vector Valued: R ! Rn

The �rst and simplest generalization of the derivative comes from looking at vector valued functions
 : R ! Rn . Such function are often visualized as parameterized paths inRn .
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Example 2.2

1. Consider the function  1 : [0; 2� ) ! R2; t 7! (cos(t); sin(t)). By plotting the values of the
function for t 2 [0; 2� ), we see that  1 traces out the unit circle in R2.

2. The map  2 : (0; 1 ) ! R2 given by  2(t) = ( t cos(t); t sin(t)) is a spiral (see Figure 19b).

3. The function  3 : R ! R3 given by  3(t) = ( t; cos(t); sin(t)) is a Helix (see Figure 19a).

x

yz

 (t) = ( t; cos(t); sin(t))

(a)

x

y

 (t) = ( t cos(t); t sin(t))

(b)

Figure 19: Examples of parameterized curves and their derivatives. Left: A helix inR3. Right: A
spiral in R2.

De�nition 2.3

We say that a function  : R ! Rn is di�erentiable if at t0 if

 0(t0) = lim
h! 0

 (t0 + h) �  (t0)
h

=
�

lim
h! 0

 1(t0 + h) �  1(t0)
h

; : : : ; lim
h! 0

 n (t0 + h) �  n (t0)
h

�

exists. If  is di�erentiable at every point in its domain, we will say that  is di�erentiable.

Thus a vector-value function of a single variable is di�erentiable precisely when each of its
component functions is di�erentiable, and the derivative may be computed by di�erentiating
each component separately. For example, we can immediately deduce that the curve (t) =
(et ; cos(t2); (t2 + 1) � 1) is di�erentiable everywhere, since each of its component functions are dif-
ferentiable everywhere, and moreover its derivative is given by

 0(t) =
�

et ; � 2t sin(t2);
� 2t

(1 + t2)2

�
:

Similarly, every curve given in Example 2.2 is di�erentiable.
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Example 2.4

Determine the derivatives of each curve given in Example 2.2.

Solution. In every case we need only read o� the derivatives of each component:

 0
1(t) = ( � sin(t); cos(t))

 0
2(t) = (cos( t) � t sin(t); sin(t) + t cos(t))

 0
3(t) = (1 ; � sin(t); cos(t)) : �

In the context of  : R ! Rn parameterizing a curve in Rn , its derivative  0(t0) represents
the instantaneous velocity of the curve at that point (both the speed at the direction). The
corresponding vector is tangent to the curve. For example, see Figure-19.

Proposition 2.5

Let f ; g : R ! Rn and ' : R ! R be di�erentiable functions.

1. (' f )0 = ' 0f + ' f 0,

2. (f � g)0 = f 0� g + f � g0,

3. (f � g)0 = f 0� g + f � g0 (if n = 3).

In particular, since the cross-product is not-commutative, the order of f and g matters.

Proof. We will do the proof for (2) and leave the others as an exercise for the students. Let
f (t) = ( f 1(t); : : : ; f n (t)) and g(t) = ( g1(t); : : : ; gn (t). Di�erentiating their dot product yields

d
dt

(f (t) � g(t)) =
d
dt

(f 1(t)g1(t) + � � � + f n (t)gn (t))

=
�
f 0

1(t)g1(t) + f 1(t)g0
1(t)

�
+ � � � +

�
f 0

n (t)gn (t) + f n (t)g0
n (t)

�

=
�
f 0

1(t)g1(t) + f 0
2(t)g2(t) + � � � + f 0

n (t)gn (t)
�

+
�
f 1(t)g0

1(t) + f 2(t)g0
2(t) + � � � + f n (t)g0

n (t)
�

= f 0(t) � g(t) + f (t) � g0(t):

2.1.3 Multivariable Rn ! R

The previous section represented the simplest generalization of the derivative to multiple dimen-
sions. In this section, we will now examine what happens when our function takes in multiple
parameters. This situation is signi�cantly more complicated: In the previous two sections, only
a single variable existed to be di�erentiated. Now that our functions have multiple parameters,
making sense of how to meaningfully de�ne a derivative becomes its own challenge.

Let f : Rn ! R be a function. We can visualize this function by thinking about its graph,

�( f ) = f (x ; f (x)) : x 2 Rng � Rn+1 :
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Rn

x

f (x)

Figure 20: A function f : Rn ! R can be visualized in terms of its graph.

as illustrated in �gure 20. In this case, what does it mean to behave linearly? The correct notion
of a linear object in Rn+1 is that of an n-plane. An n-plane through the origin has the equation

c1x1 + c2x2 + � � � + cnxn + cn+1 xn+1 = c � x = 0 :

In the case wheren = 1 then this reduces to c1x1 + c2x2 = 0, which we recognize as a straight line
through the origin. If we instead would like this plane to pass through a point a 2 Rn+1 , we can
change this to

0 = c � (x � a) = c � x � c � a

or equivalently, c � x = d for some constantd = c � a. The di�erence between writing an n-plane as
c � x = d and c � (x � a) = 0 is equivalent to the di�erence between writing a line as y = mx + b or
in point-slope format (y � y0) = m(x � x0).

For a multivariate function f : Rn ! R, our generalization of being di�erentiable at a point a
should then be that f behaves like ann-plane neara.

De�nition 2.6

We say that a function f : Rn ! R is di�erentiable at a point a 2 Rn if there exists c 2 Rn

such that

lim
h ! 0

f (a + h) � f (a) � c � h
khk

= 0 :

The constant c, if it exists, is called the gradient of f , and is often denotedr f (a).

Recall that the limit h ! 0 means that we approach0 from every possible direction, which is
why we had to use ann-plane to capture the idea of approaching the pointa from every conceivable
direction. One can show that the equation of the tangent n-plane at f (a) is given by xn+1 =
f (a) + r f (a) � x so that f (a + h) � f (a) � r f (a) � h represents the error between between the value
of the function and that of the tangent plane. Once again, the condition on di�erentiability means
that this error goes to zero faster than linearly.
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Example 2.7

Show that the function f (x; y) = x2 + y2 is di�erentiable at the point a = (1 ; 0) with
r f (1; 0) = (2 ; 0). Determine more generally whatr f (a) should be for generala.

Solution. Let h = ( h1; h2). Checking the de�nition of di�erentiability, we have

lim
h ! mb0

f (a + h) � f (a) � r f (a) � h
khk

= lim
h ! 0

f (1 + h1; h2) � f (1; 0) � (2; 0) � (h1; h2)
p

h2
1 + h2

2

= lim
h ! 0

(1 + h1)2 + h2
2 � 1 � 2h1p

h2
1 + h2

2

= lim
h ! 0

1 + 2h1 + h2
1 + h2

2 � 1 � 2h1p
h2

1 + h2
2

= lim
h ! 0

q
h2

1 + h2
2 = 0

which is precisely what we wanted to show. More generally, leta = ( x; y) and r f (a) = ( c1; c2), so
that di�erentiability becomes

lim
h ! 0

f (x + h1; y + h2) � f (x; y) � (c1; c2) � (h1; h2)
khk

= lim
h ! 0

(x2 + 2xh1 + h2
1) + ( y + 2yh2 + h1)2 � x2 � y2 � c1h1 � c2h2p

h2
1 + h2

2

= lim
h ! 0

h1(2x � c1) + h2(2y � c2) + h2
1 + h2

2p
h2

1 + h2
2

:

If either 2x � c1; 2y � c2 6= 0 then this limit does not exist, which implies that c1 = 2x and c2 = 2y;
that is, r f (x; y) = (2 x; 2y). �

Remark 2.8

1. It was very necessary that we considered the entiref (a + h) � f (a) � r f (a) � h term,
since the cancellations were necessary to ensure that the limit exists. As such, we
cannot just drop the r f (a) � h like we were able to do when our functions were maps
from R to R.

2. Notice that our gradient r f (x) = (2 x; 2y) contains the terms 2x and 2y which are
the derivatives of x2 and y2 respectively. So it seems like the gradient might still be
related to the one-dimensional derivatives.

Theorem 2.9

If f : Rn ! R is di�erentiable at a then f is continuous at a.
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Proof. Sincef is di�erentiable at a we have that

lim
h ! 0

[f (a + h) � f (a) � r f (a) � h] = lim
h ! 0

f (a + h) � f (a) � r f (a) � h
khk

khk

=
�

lim
h ! 0

f (a + h) � f (a) � r f (a) � h
khk

� �
lim
h ! 0

khk
�

= 0 :

Since this limit exists, we can conclude continuity as follows:

0 = lim
h ! 0

h
[f (a + h) � f (a) � r f (a) � h] + r f (a) � h

i

= lim
h ! 0

[f (a + h) � f (a)] :

Partial Derivatives: We take a small detour to develop some machinery before returning to
di�erentiability. We have seen that it can be very di�cult to capture how a limit approaches a
point in multiple dimensions, precisely because there are in�nitely many possible ways to approach
a point. The same argument works for di�erentiability: There is no obvious way of writing down
the rate of change of a function in in�nitely many directions simultaneously.

However, we know from linear algebra that we do not have to be able to describe every vector
in Rn , only a �nite subset of basis vectors, from which every other vector can be built through a
linear combination. We will apply this idea here, and determine the rate of change of the function
f in each of standard unit vectors.

De�nition 2.10

Write ( x1; : : : ; xn ) to denote the coordinates ofRn . If f : Rn ! R, we de�ne the partial
derivative of f with respect to x i at a = ( a1; : : : ; an ) 2 Rn as

@f
@xi

(a) = lim
h! 0

f (a1; : : : ; ai + h; : : : ; an ) � f (a1; : : : ; an )
h

:

That is, @f
@xi

is the one-variable derivative off (x1; : : : ; xn ) with respect to x i , where all other
variables are held constant.

Example 2.11

Determine the partial derivatives of the function f (x; y; z) = xy + sin (x2z) + z� 2ey .

Solution. Remember that when computing the partial derivative with respect to x i , we treat all
other variables as constants. Hence

@f
@x

= y + 2xz cos(x2z)

@f
@y

= x +
ey

z2

@f
@z

= x2 cos(x2z) �
2ey

z3 : �
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It can be quite cumbersome to write @f
@xi

, so we will often interchange it with any of the following
when it is unambiguous:

@f
@xi

; @x i f; @i f; f x i ; f i :

This will be particularly convenient when we start taking higher order partial derivatives.

Recall in Example 2.7 we showed that iff (x; y) = x2+ y2 then r f (x; y) = (2 x; 2y) = ( @x f; @y f ).
Is this just a coincidence, or does it hold more generally?

Theorem 2.12

If f : Rn ! R is di�erentiable at a then the partials of f exist at a and

r f (a) =
�

@f
@x1

(a); : : : ;
@f
@xn

(a)
�

:

Proof. This is actually a fairly natural result. If di�erentiability means that the limit exists from
every direction and partial derivatives are only capturing information about a single direction, it
seems natural that one would imply the other.

More directly, let ei = (0 ; : : : ; 1
| {z }

i -times

; 0; : : : ; 0) be the standard unit vector in the i -th direction. We

are going to use our knowledge that the function is di�erentiable and approach along thei -th
coordinate axis. Indeed, leth = hei and r f (a) = ( c1; : : : ; cn ) so that

0 = lim
h! 0

f (a + h) � f (a) � r f (a) � h
khk

= lim
h! 0

f (a1; : : : ; ai + h; : : : ; an ) � f (a1; : : : ; an )
h

� ci

[Note: The �nal equation above is always true, but how we arrive at it depends on the sign ofh.
Convince yourself of this!] Re-arranging gives@f

@xi
= ci . Since this holds for arbitrary i , we conclude

that x
r f (a) = ( @x1 f; : : : ; @xn f ) :

It is important to note however that the converse of this theorem is not true; that is, it is
possible for the partial derivatives to exist but for the function to not be di�erentiable. Indeed, it
is precisely because the partials only measure the di�erentiability in �nitely many directions that
the converse direction does not hold. Consider

f (x; y) =

(
xy

x2+ y2 ; if ( x; y) 6= (0 ; 0)

0 if (x; y) = (0 ; 0):
(2.2)

We know that this function is not continuous at (0 ; 0) (for example, approach along the liney = mx)
and so has no chance of being di�erentiable at (0; 0). Nonetheless, the partial derivatives exist at
(0; 0) since

@f
@x

(0; 0) = lim
h! 0

f (h; 0) � f (0; 0)
h

= 0 = lim
h! 0

f (0; h) � f (0; 0)
h

=
@f
@y

(0; 0):
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To arrive at a meaningful converse, we need to add an extra regularity condition:

Theorem 2.13

Let f : Rn ! R and a 2 Rn . If @i f (x) all exist and are continuous in an open neighbourhood
of a, then f is di�erentiable at a.

The proof of this theorem is very slick, but is not terribly enlightening. As such, we omit its
proof and leave it as an exercise for the student (the proof may be found in Folland). Once again
let f be the function in (2.2). Notice that its partial derivatives are given by

@f
@x

=
y3 � x2y

(x2 + y2)2 ;
@f
@y

=
x3 � y2x

(x2 + y2)2

and these functions do not have limits as (x; y) ! (0; 0) (try the line y = � x). Hence the partial
derivatives are not continuous, and Theorem 2.13 does not apply.

De�nition 2.14

We de�ne the collection of C1 functions on U to be

C1(Rn ; R) =
�

f : Rn ! R :
@i f exists and is continuous

i = 1 ; : : : ; n

�
:

That is, a function f is C1 if all of its partial exist and are continuous.

All C1 functions are automatically di�erentiable by Theorem 2.13; however, there are di�eren-
tiable functions which are not C1. For example, the function

f (x; y) =

8
<

:
(x2 + y2) sin

�
1p

x2+ y2

�
; if ( x; y) 6= (0 ; 0)

0 if (x; y) = (0 ; 0)
(2.3)

is everywhere di�erentiable, but its partial derivatives are not continuous at (0 ; 0).

Exercise: Show that (2.3) is di�erentiable but its partial derivatives are not continuous at
(0; 0).

We have presented a lot of theorems and counter-examples, so let's take a moment to summarize
what we have said:

Di�erentiable ) Partials Exist Theorem 2.12
Di�erentiable 6( Partials Exist Function (2.2)

Partials exist and continuous ) Di�erentiable Theorem 2.13
Partials exist and continuous 6( Di�erentiable Function (2.3)

Directional Derivatives: Partial derivatives gave us the ability to determine how a function
was changing along the coordinate axes, but what if we want to see how the derivative is changing
along other vectors? This is done via directional derivatives:
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De�nition 2.15

Let f : Rn ! R and a 2 Rn . If u 2 Rn is a unit vector (kuk = 1) then the directional
derivative of f in the direction u at a is

@u f (a) = lim
t ! 0

f (a + tu) � f (a)
t

=
d
dt

�
�
�
�
t=0

f (a + tu):

This represents an idea that is prevalent throughout mathematics, and especially the �eld
of di�erential geometry . First of all, notice that  : R ! Rn given by  (t) = a + tu is the
straight line through a in the direction of u, and hence is a curve. By composing withf , we
get g = f �  : R ! Rn ! R which is just a normal, one-variable function, and hence can be
di�erentiated as normal. We know that  0(t) = u is the velocity vector of the curve, so to see how
the function behaves in the direction u we look at how the function f behaves in a neighbourhood
of our point a, and di�erentiate at t = 0 to get the behaviour in this direction.

Example 2.16

Determine the directional derivative of f (x; y) = sin( xy) + ex in the direction u = 1p
5
(1; 2)

at the point a = (0 ; 0).

Solution. We can proceed by direct computation:

d
dt

�
�
�
�
t=0

f (a + tu) =
d
dt

�
�
�
�
t=0

f
�

t
p

5
;

2t
p

5

�

=
d
dt

�
�
�
�
t=0

�
sin

�
2
5

t2
�

+ et=
p

5
�

=
�

4
5

t cos
�

2
5

t2
�

+
1

p
5

et=
p

5
�

t=0

=
1

p
5

�

Theorem 2.17

If f : Rn ! R is di�erentiable at a, then for any unit vector u, @u f exists. Moreover,
@u f (a) = r f (a) � u.

Proof. The idea is almost exactly the same as Theorem 2.12. We will approach along the linea+ tu
and use di�erentiability to conclude that the limit exists. As such, let h = tu for t 2 R, so that

0 = lim
t ! 0

f (a + h) � f (a) � r f (a) � h
khk

= lim
t ! 0

f (a + tu) � f (a) � tr f (a) � u
t

=
�

lim
t ! 0

f (a + tu) � f (a)
t

�
� r f (a) � u:
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Re-arranging, we get@u f (a) = r f (a) � u as required.

Example 2.18

Verify the result from Example 2.16 by using the above theorem.

Solution. Our function f (x; y) = sin( xy)+ ex is clearly di�erentiable, as its partial derivatives exist
and are continuous:

@f
@x

= y cos(xy) + ex ;
@f
@y

= x cos(xy):

At the point a = (0 ; 0) the gradient is r f (0; 0) = (1 ; 0), and so

@u f (0; 0) = r f (0; 0) � u = (1 ; 0) �
�

1
p

5
;

2
p

5

�
=

1
p

5
: �

Exercise: Show that the converse of Theorem 2.17 is false; that is, there is a function in
which every directional derivative exists at a point, but the function is not di�erentiable.

2.1.4 Functions Rn ! Rm

Our motivation for de�ning the derivative thus far has been that a function is di�erentiable if it
can be approximated by a linear function, with an error that tends to zero faster than linear. In
such instances, that linear approximation is what we call the derivative. The same story will hold
for functions f : Rn ! Rm .

So what does it mean for a functionL : Rn ! Rm to be linear? Here, the word linear has the
same interpretation as it does in linear algebra; that is, for every x; y 2 Rn

L (ax + by) = aL (x) + bL (y ):

The student is hopefully familiar with the fact that such maps can be represented by matrices, with
respect to some basis. In particular, ifL : Rn ! Rm then L must take an n-vector to an m-vector,
and thus must be anm � n-matrix, say A. In this basis, we can write L (x) = Ax. Thus we would
like to say something along the lines of \A function f : Rn ! Rm is di�erentiable at a 2 Rn if there
exists a matrix A such that

f (a + h) = f (a) + Ah + error( h):

Solving for the error we get

error(h) = f (a + h) � f (a) � Ah:

For this approximation to do a good job, the error should tend to zero faster than linearly, leading
us to the following de�nition:
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De�nition 2.19

A function f : Rn ! Rm is di�erentiable at the point a 2 Rn if there exists an m � n matrix
A such that

lim
h ! 0

kf (a + h) � f (a) � AhkRm

khkRn
= 0 : (2.4)

We often denote the quantity A by Df (a), referred to as the Jacobian matrix.

Example 2.20

Let f : R3 ! R2 be given by f (x; y; z) = ( x2; xz + y)T . Show that f is di�erentiable at the
point a = ( � 1; 1; 0) with

D f (a) =
�

� 2 0 0
0 1 � 1

�
:

Solution. Let h = ( h1; h2; h3) so that a + h = ( � 1 + h1; 1 + h2; h3). Computing the numerator, we
get

kf (a + h) � f (a) � D f (a)hk =








�
h2

1 � 2h1 + 1
� h3 + h1h3 + h2 + 1

�
�

�
1
1

�
�

�
� 2 0 0

0 1 � 1

�
0

@
h1

h2

h3

1

A








=






�
h2

1
h1h3

� 


 =

q
h4

1 + h2
1h2

3

= h1

q
h2

1 + h2
3:

We will have to proceed by the Squeeze Theorem. Taking the entire di�erence quotient into
consideration, we have

0 �
kf (a + h) � f (a) � AhkRm

khkRn
=

h1
p

h2
1 + h2

3p
h2

1 + h2
2 + h2

3

�
h1

p
h2

1 + h2
3p

h2
1 + h2

3

= h1:

As both the upper and lower bounds limit to 0, we conclude thatf is di�erentiable as required. �

We would like to �nd a much better way of determining Df (a) than using the limit de�nition.
If f is di�erentiable, then

lim
h ! 0

kf (a + h) � f (a) � Df (a)hk = 0 :

Furthermore, the norm of a vector tends to zero if and only if each of its terms also tends to zero.
Write [ D f (a)] i for the i -th row of D f (a) and let f (x) = ( f 1(x); : : : ; f m (x)). Then (2.4) is equivalent
to the statement that for each i = 1 ; : : : ; m we have

lim
h ! 0

jf i (a + h) � f i (a) � [D f (a)] i � hj
khk

= 0 :

Notice that this is exactly the de�nition of the gradient, and so [ D f (a)] i = r f i (a). We thus get
the following result for free:
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Proposition 2.21

If f : Rn ! Rm is given by f (x) = ( f 1(x); : : : ; f m (x)), then f is di�erentiable if and only if
each of thef i : Rn ! R is di�erentiable, and in this case

Df (a) =

0

B
B
B
B
B
B
@

@f1
@x1

@f1
@x2

� � � @f1
@xn

@f2
@x1

@f2
@x2

� � � @f2
@xn

...
...

. . .
...

@fm
@x1

@fm
@x2

� � � @fm
@xn

1

C
C
C
C
C
C
A

:

Example 2.22

Determine the derivative of the function f (r; � ) = ( r sin(� ); r cos(� )).

Solution. By de�nition, the derivative is the matrix of partial derivatives, so we can compute this
to be

df (r; � ) =
�

sin(� ) r cos(� )
cos(� ) � r sin(� )

�
: �

Example 2.23

Determine the derivative of the function f (x; y; z) = ( xy; z sin(xy); exz ).

Solution. Once again, we compute the matrix of partial derivatives:

df (x; y; z) =

0

@
y x 0

zy cos(xy) xz cos(xy) sin(xy)
zexz 0 xexz

1

A : �

2.2 The Chain Rule

Given two functions g : Rk ! Rn and f : Rn ! Rm , their composition is given by f � g : Rk !
Rn ! Rm . Just as was the case in one-variable, we would like to determine when this new function
is di�erentiable, and how to write its derivative in terms of D f and Dg.

Let's start by looking at what happens in one dimension. If k = n = m = 1 then the derivative
of f � g is given by (f � g)0(a) = f 0(g(a))g0(a). For more generalk; n; and m, we know that D f is
an m � n matrix, Dg is an n � k matrix, and D(f � g) needs to be anm � k matrix. There is only
one way to combine these matrices:
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2 Di�erential Calculus 2.2 The Chain Rule

Theorem 2.24: Chain Rule

Let g : Rk ! Rn and f : Rn ! Rm . If g is di�erentiable at a 2 Rk and f is di�erentiable at
g(a) 2 Rn , then f � g is di�erentiable at a, and moreover its derivative can be written as

D(f � g)(a) = D f (g(a))Dg(a):

The proof of the Chain Rule in even a single dimension is tricky. The addition of multiple
dimensions only serves to make the proof messy, so we will omit it. Here now it is important to
make the distinction between which objects are treated as rows and which are treated as columns.
If f : Rn ! Rm then Df (a) should reduce a gradient whenm = 1, and should be curve derivative
when n = 1. In particular, this implies that the gradient of a function Rn ! R is a row vector,
while the derivative of a function R ! Rn is a column vector.

There are a few notable cases that we should take into account. Letg : R ! Rn and f : Rn ! R
so that f � g : R ! R. By the Chain Rule, we must then have

d
dt

(f � g)( t) = r f (g(t)) � g0(t)

=
@f
@x1

�
�
�
�
g(t )

g0
1(t) + � +

@f
@xn

�
�
�
�
g(t )

g0
n (t):

Using Leibniz notation, let y = f (x) and set (x1; : : : ; xn ) = g(t) = ( g1(t); : : : ; gn (t)) so that
g0

i (t) = dx i
dt . Our derivative now becomes

d
dt

(f � g) =
@y
@x1

@x1
@t

+ � � � +
@y

@xn

@xn
@t

:

Once again, it seems as though the derivatives are `cancelling,' though this is not the case.

Example 2.25

Let g(t) = (sin( t); cos(t); t2) and f (x; y; z) = x2 + y2 + xyz. Determine the derivative of f � g.

Solution. One does not need to use the chain rule here, since we can explicitly write

f (g(t)) = f (sin(t); cos(t); t2) = sin 2(t) + cos2(t) + t2 sin(t) cos(t) = 1 + t2 sin(t) cos(t);

and di�erentiating yields

d
dt

f (g(t)) = 2 t sin(t) cos(t) + t2 cos2(t) � t2 sin2(t):

Let's see that we get the same answer with the chain rule. We know thatg0(t) = (cos( t); � sin(t); 2t)
and r f (x; y; z) = (2 x + yz;2y + xz; xy ) so that

r f (g(t)) � g0(t) = (2 sin( t) + t2 cos(t); 2 cos(t) + t2 sin(t); sin(t) cos(t)) � (cos(t); � sin(t); 2t)

= 2 sin( t) cos2(t) + t2 cos(t) � 2 cos(t) sin 9t) � t2 sin2(t) + 2 t cos(t) sin(t)

= 2 t sin(t) cos(t) + t2 cos2(t) � t2 sin2(t): �
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Now let g : Rn ! Rm and f : Rm ! R so that f � g : Rn ! R. The Chain Rule tells us that

r (f � g)(x) = r f (g(x))Dg(x)

=
�

@f
@x1

; : : : ;
@f
@xn

�

0

B
B
B
B
B
@

@g1
@t1

@g1
@t2

� � � @g1
@tn

@g2
@t1

@g2
@t2

� � � @g2
@tn

...
...

. . .
...

@gm
@t1

@gm
@t2

� � � @gm
@tn

1

C
C
C
C
C
A

:

Thus if we set y = f (x) and x = g(t ) then

@
@ti

(f � g)(x) =
@y
@x1

@x1
@ti

+
@y
@x2

@x2
@ti

+ � � � +
@y

@xn

@xn
@ti

:

Example 2.26

Let f (x; y; z) = xz + eyz and g(t1; t2) = ( t1; t2; t1t2). Determine r (f � g).

Solution. This can again be computed by hand. Notice that

(f � g)( t1; t2) = f (t1; t2; t1t2) = t2
1t2 + et1 t2

2 ;

and so

r (f � g)( t1; t2) =
�

2t1t2 + t2
2et1 t2

2 ; t2
1 + 2 t1t2et1 t2

2

�
:

On the other hand, r f = ( z; zeyz ; x + yeyz) so by the Chain Rule

r (f � g)( t1; t2) = ( t1t2; t1t2et1 t2
2 ; t1 + t2et1 t2

2 )

0

@
1 0
0 1
t2 t1

1

A

=
�

t1t2 + t1t2 + t2
2et1 t2

2 ; t1t2et1 t2
2 + t2

1 + t1t2et1 t2
2

�

=
�

2t1t2 + t2
2et1 t2

2 ; t2
1 + 2 t1t2et1 t2

2

�
: �

The next example is if g : R ! Rn and f : Rn ! Rm . The composition is a mapf � g : R ! Rm

and so in this case the Chain Rule tells us that

d
dt

(f � g)( t) = D f (g(t)) � g0(t):

Example 2.27

Let f (x; y) = ( xy; x + y; x � y) and g(t) = ( t; t 2). Compute d
dt (f � g) ( t).
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Solution. Explicitly computing the map, we have

(f � g)( t) = ( t3; t + t2; t � t2)T

and so
d
dt

(f � g)( t) = (3 t2; 1 + 2t; 1 � 2t)T :

On the other hand,

D f (x; y) =

0

@
y x
1 1
1 � 1

1

A ; g0(t) = (1 ; 2t)T

so by the Chain Rule

d
dt

(f � g)( t) =

0

@
t2 t
1 1
1 � 1

1

A
�

1
2t

�
=

0

@
3t2

1 + 2t
1 � 2t

1

A : �

Finally, we do an example using the full Chain Rule:

Example 2.28

Let g(r; s) = ( r + rs; r 2; s2) and f (x; y; z) = ( y2 + z2; xy). Determine D(f � g).

Solution. One can check that

Dg(r; s) =

0

@
1 + s r

2r 0
0 2s

1

A ; D f (x; y; z) =
�

0 2y 2z
y x 0

�
;

so that by the Chain Rule we have

D(f � g)( r; s) =
�

0 2r 2 2s2

r 2 r + rs 0

�
0

@
1 + s r

2r 0
0 2s

1

A =
�

4r 3 4s3

3r 2 + 3 r 2s r3

�
: �

Exercise: In Example 2.28 we used the Chain Rule without explicitly computing the map
f � g. Write down the map f � g, compute its derivative, and verify the result of Example
2.28.

An intuition for the derivative: For functions f : R ! R and g : Rn ! R we had a way of
visualizing the derivative: in the former casef 0(a) described the slope of the tangent line through
a, while in the latter case r g(a) de�ned a tangent plane. In the case of functionsRn ! Rm , the
visual picture becomes somewhat more complicated.

It is important that we get away from the idea of thinking of such maps as curves or graphs,
since neither of these �ts into this context of multivariable vector valued maps. Instead, we must
truly think of a function as a black-box, which takes an input (elements of Rn ) and delivers an
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f

(a) The function f (x; y) = ( x + y; y2) acts on an orthogonal grid in the way pictured.

(b) The function f (x; y) = ( x cos(y); x sin(y)) acts on an orthogonal grid in the way pictured.

Figure 21: One can visualize mapsRn ! Rm by how they map orthogonal grids.

output (elements of Rm ). If we are lucky and m = n, we can try to visualize how such functions
work by looking at how orthogonal grids transform (see Figure 21).

So what should derivatives do in this regime? The idea is roughly as follow: Given a point
a 2 Rn and an in�nitesimal change in a direction u, we want to characterize how our function
transforms that in�nitesimal change. Alternatively, pretend that we are driving a car in Rn and
our path is described by the curve : R ! Rn and satis�es

 (0) = a;  0(0) = u;

that is, we pass through the point a at the time t = 0 and here we have a certainly velocity
vector u. Now let f : Rn ! Rm be a di�erentiable (hence continuous) function. The composition
f �  : R ! Rm is a path in Rm , and so (f �  )0(0) = v describes the velocity vector at the point
(f �  )(0) = f (a). By the chain rule, we know that

v = ( f �  )0(0) = D f (a) 0(0) = D f (a)u;

namely, D f (a) describes how our velocity vectoru transforms into the velocity vector v . In fact,
this holds regardless of the choice of curve througha, and so

\ D f (a) describes how velocity vectors througha transform into velocity vectors through
f (a)."

This is illustrated in Figure- ??.
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2 Di�erential Calculus 2.3 The Mean Value Theorem

Change in scale: The quantity D f (a) represents how velocity vectors transform at the pointa.
If f : Rn ! Rn then Df (a) is actually a square matrix. A result that the student may be familiar
with is that given a linear transformation A : Rn ! Rn and a setS, then

Area(A(S)) = det( A)Area(S):

Of course, we have not been very careful by what the word area means, but this is something we
will �x in a later section. Thus Df (a) can tell us information about how in�nitesimal volumes
change neara, and leads to the following:

De�nition 2.29

If f : Rn ! Rn is di�erentiable at a, then we de�ne the Jacobian (determinant) of f to be
det df (a).

The Jacobian will appear a great deal in later sections, but we will not have too much occasion
to use it now. The idea is that the Jacobian describes in�nitesimally how areas change under the
map f .

Example 2.30

Determine the Jacobian determinant of the mapsf (r; � ) = ( r cos(� ); r sin(� )) and g(x; y) =
(x + y; y2).

Solution. These are the maps plotted in Figure-21, and it is a straightforward exercise to compute
the Jacobian matrices to be

Df (r; � ) =
�

cos(� ) � r sin(� )
sin(� ) r cos(� )

�
Dg(x; y) =

�
1 1
0 2y

�
:

Thus taking determinants, we get the Jacobian determinants

det D f (r; � ) = r; det Dg(x; y) = 2 y: �

2.3 The Mean Value Theorem

The Mean Value Theorem is one of the most interesting theorem of mathematics. It appears
relatively innocuous at �rst sight, but leads to a plethora of powerful results. In this section we
will take a brief moment to examine whether the MVT generalizes to multiple dimensions, and if
so how that generalization takes hold.

To begin with, we recall the statement of the Mean Value Theorem:

Theorem 2.31: Mean Value Theorem

If f : [a; b] ! R is continuous on [a; b] and di�erentiable on ( a; b), then there exists c 2 (a; b)
such that

f (b) � f (a) = f 0(c)(b� a): (2.5)

One can apply the MVT to prove several important results, such as the following:
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y

x
slope = f (b) � f (a)

b� a

a b

f (a)

f (b)

c

Figure 22: The Mean Value Theorem says that there is a point on this graph such that the tangent
line has the same slope as the secant between (a; f (a)) and (b; f (b)).

1. If f : [a; b] ! R is di�erentiable with bounded derivative, say jf 0(x)j � M for all x; y 2 [a; b],
then jf (y) � f (x)j � M jy � xj.

2. If f 0(x) � 0 for all x 2 [a; b] then f is the constant function on [a; b].

3. If f 0(x) > 0 for all x 2 [a; b] then f is an increasing (and hence injective) function.

This is but a short collection of useful theorems; naturally, there are many more.

As a �rst look at whether or not the MVT generalizes, we should consider functions of the type
f : R ! Rn . If one were to guess as to what kind of statement a mean value theorem here might
have, it would probably be something of the form:

\If f : [a; b] ! Rn is continuous on [a; b] and di�erentiable on ( a; b) then there exists a
c 2 [a; b] such that

f (b) � f (a) = f 0(c) (b� a) :00

One should check that the equality sign above even makes sense. The left-hand-side consists of a
vector in Rn , while the right-hand-side consists of multiplying a scalar (b� a) with a vector f 0(c).
Okay, so the result does make sense. However, applying this to even simple functions immediately
results in nonsense.

For example, consider the function f : [0; 2� ] ! R3 given by f (t) = (cos( t); sin(t)). This
certainly satis�es our hypotheses, as it is every continuous and everywhere di�erentiable. On the
other hand, f (0) = (1 ; 0) and f (2� ) = (1 ; 0) so that f (1) � f (0) = (0 ; 0). However, this would then
imply that there exists a c such that

(0; 0) = ( � 2� sin(c); 2� cos(c))

and this is impossible, since there is no point at which both sin(t) and cos(t) are zero.

There is a way to �x this, but we are not interested in how to do this at the moment.
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2 Di�erential Calculus 2.3 The Mean Value Theorem

So vector-valued functions fail to admit a generalization of the MVT. Do real-valued multivariate
functions have a version of the Mean Value Theorem? The answer is a�rmative, and the key lies
with the Chain Rule.

Theorem 2.32: Mean Value Theorem for Multivariate Functions

Let U � Rn and let a; b 2 U be such that the straight line connecting them lives entirely
within U. More precisely, the curve : [0; 1] ! Rn given by  (t) = (1 � t)a + tb satis�es
 (t) 2 U for all t 2 [0; 1]. If f : U ! R is a function such that f �  is continuous on [0; 1]
and di�erentiable on (0 ; 1), then there exists at0 2 (0; 1) such that c =  (t0) and

f (b) � f (a) = r f (c) � (b � a):

Proof. The idea is that we have used the chain rule to reduce this multivariate function to a real-
valued function of a single variable. Thinking of the line  (t) = a(1 � t) + tb as a copy of the
interval [0; 1] inside of U, restricting f to this line gives a function f �  : [0; 1] ! R to which we
can apply the original MVT.

More formally, we know that f �  : [0; 1] ! R is continuous on [0; 1] and di�erentiable on (0; 1),
so by the Mean Value Theorem there existst0 2 (0; 1) such that

(f �  )(1) � (f �  )(0) = ( f �  )0(t0)(1 � 0):

Now (f �  )(1) = f ( (1)) = f (b) and (f �  )(0) = f ( (0)) = f (a). In addition, the Chain Rule
tells us that

(f �  )0(t0) = r f ( (t0)) �  0(t0) = r f (c) � (b � a):

Combining everything together, we get

f (b) � f (a) = r f (c) � (b � a);

as required.

Important to the statement of the Mean Value Theorem is the fact that the line segment
connecting a and b lives entirely within U. Conveniently, we have already seen that convex sets
satisfy this property for any pair of points within the set.

Corollary 2.33

If U � Rn is convex andf : U ! R is a di�erentiable function such that jr f (x)j � M for
all x 2 U, then for every a; b 2 U we have

jf (b) � f (a)j � M jb � aj:

Corollary 2.34

If U � Rn is convex andf : U ! R is a di�erentiable function such that r f (x) = 0 for all
x 2 U, then f is a constant function on U.
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Exercise: The proofs of Corollaries 2.33 and 2.34 are almost identical to their single variable
equivalents. Prove these theorems.

2.4 Multi-indices and higher order partials

2.4.1 Second-Order Partial Derivatives

For di�erentiable functions of the type f : R ! R, a lot of information about f could be derived
not only from its �rst derivative f 0, but from its higher order derivatives f (n) . For example, if f
represents some physical quantity such as position as a function of time, we know thatf 0 is its
velocity, f 00is its acceleration, andf (3) is its jerk. This means that the higher-order derivatives are
essential when modelling di�erential equations. We used an in�nite number of derivatives when
computing Taylor series, and we exploited the second derivative test to determine optimality of
critical points. All of these applications and more will extend to functions f : Rn ! R.

The �rst step is second-order derivatives; that is, to di�erentiate a function twice. Interestingly
though, we now have many di�erent ways of computing a second derivative. For example, if
f : R2 ! R then there are four possible second derivatives:

@xx f =
@

@x

�
@f
@x

�
; @xy f =

@
@x

�
@f
@y

�
; @yx f =

@
@y

�
@f
@x

�
; @yy f =

@
@y

�
@f
@y

�
:

The terms @xx f; @yy f are called pure partial derivatives, while @xy f; @yx f are called mixed partial
derivatives. In general, given a function f : Rn ! R, there are n2 di�erent second-order partial
derivatives.

Example 2.35

Determine the second-order partial derivatives of the functionf (x; y) = exy + x2 sin(y).

Solution. This is a matter of straightforward computation. The �rst order partial derivatives are
given by

@f
@x

= yexy + 2x sin(y);
@f
@y

= xexy + x2 cos(y):

To compute the second order partials, we treat each of the �rst order partials as functions ofx and
y and repeat the process:

@xx f = y2exy + 2 sin( y) @xy f = exy + xyexy + 2x cos(y)
@yx f = exy + xyexy + 2x cos(y) @yy f = x2exy � x2 sin(y):

Interestingly, note that @yx f = @xy f . �

Example 2.36

Determine the second-order partial derivatives of the functionf (x; y) = ecos(xy ) .

c 2015 Tyler Holden

67



2 Di�erential Calculus 2.4 Higher Order Partials

Solution. The �rst order partial derivatives are given by

@x f = � y sin(xy)ecos(xy ) ; @y f = � x sin(xy)ecos(xy ) :

The second order derivatives are given by

@xx f = ecos(xy ) �
y2 sin2(xy) � y2 cos(xy)

�

@xy f = ecos(xy ) �
xy sin2(xy) � xy cos(xy) � sin(xy)

�

@yx f = ecos(xy ) �
xy sin2(xy) � xy cos(xy) � sin(xy)

�

@yy f = ecos(xy ) �
x2 sin2(xy) � x2 cos(xy)

�
:

Here we still have@xy f = @yx f . �

The fact that @xx f = @yy f in Example 2.36 is a consequence of the symmetry of the function
f (x; y) = ecos(xy ) . However, somewhat more surprising is that in both of the previous two examples
our mixed partial derivatives were the same. It turns out that this is a fairly common occurrence.

Theorem 2.37: Clairut's Theorem

Let f : Rn ! R be a function and a 2 Rn a point. Let i; j 2 f 1; : : : ; ng with i 6= j . If @ij f (a)
and @ji f (a) both exist and are continuous in a neighbourhood ofa, then @ij f (a) = @ji f (a).

This is a technical theorem, and to present a readable version of this proof will require some sort
of sophistry (either making an argument about the ability to interchange limits, or an argument
about the existence of points in the Mean Value Theorem). In either case, we encourage the student
to think hard about this theorem, but to not worry about the proof. To make our lives a little bit
easier, we introduce the following class of functions:

De�nition 2.38

Let U � Rn be an open set. We de�neC2(U;R) to be the collection of f : Rn ! R whose
second partial derivatives exist and are continuous at every point inU.

If f is a C2 function, Clairut's theorem immediately imply that it's mixed partial derivatives
exist, are continuous, and hence are equal.

2.4.2 The Chain Rule

Despite having constantly and consistently cautioned against treating di�erentials as fractions,
there have not been too many instances to date where ignoring this advice could have caused any
damage. Here at last our e�orts will be vindicated, as we show the student some of the deeper
subtleties in using higher-order partial derivatives in conjunction with the chain rule.

Let's start with a simple but general example. To make a point, we will write all partial
derivatives using Leibniz notation. Let u = f (x; y) and suppose that both x; y are functions of
(s; t); that is, x(s; t) and y(s; t). Let's say that we wish to compute @2u

@s2 . Using the chain rule, we
can �nd the �rst order partial as

@u
@s

=
@u
@x

@x
@s

+
@u
@y

@y
@s

:
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Next, we again take a partial derivative with respect to s, to get

@2u
@s2

=
@
@s

�
@u
@s

�
=

@
@s

�
@u
@x

@x
@s

�
+

@
@s

�
@u
@y

@y
@s

�
:

Now realize that sinceu = f (x; y) is a function of x and y, @u
@x is also a function of (x; y). Thus to

di�erentiate this function with respect to s, we must once again use the chain rule. Thus looking
at only the �rst summand, we have

@
@s

�
@u
@x

@x
@s

�
=

�
@
@s

@u
@x

�
@x
@s

+
@u
@x

@2x
@s2

product rule

=
�

@2u
@x2

@x
@s

+
@2u

@x@y
@y
@s

�
@x
@s

+
@u
@x

@2x
@s2

chain rule

=
@2u
@x2

�
@x
@s

� 2

+
@2u

@x@y
@y
@s

@x
@s

+
@u
@x

@2x
@s2

:

What a mess! A similar computation on the second summand yields

@
@s

�
@u
@y

@y
@s

�
=

@2u
@y2

�
@y
@s

� 2

+
@2u

@x@y
@y
@s

@x
@s

+
@u
@y

@2y
@s2

:

Putting everything together:

@2u
@s2

=
@2u
@x2

�
@x
@s

� 2

+
@2u
@y2

�
@y
@s

� 2

+ 2
@2u

@x@y
@y
@s

@x
@s

+
@u
@x

@2x
@s2

+
@u
@y

@2y
@s2

: (2.6)

This is only a single partial derivative. The same procedure must also be used to compute@xy u
and @yyu. These are left as exercises for the student.

Exercise: Hurt your brain a little bit more! Let u = f (x; y; s) and x(s; t) and y(s; t). Now
determine @ssu.

2.4.3 Higher-Order Partials

We have limited our discussion to just second-order partial derivatives, in hopes that this simplest
of cases would serve as a gentle introduction. Even in this case though, Equation (2.6) shows
that things can get unpleasant very quickly. We begin by generalizing Clairut's theorem to higher
dimensions.

De�nition 2.39

If U � Rn is an open set, then fork 2 N we de�ne Ck (U;R) to be the collection of functions
f : Rn ! R such that the k-th order partial derivatives of f all exist and are continuous on
U. If the partials exist and are continuous for all k, we say that f is of type C1 (U;R).
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Theorem 2.40: Generalized Clairuit's Theorem

If f : U � Rn ! R is of type Ck , then

@i 1 ;:::;i k f = @j 1 ;:::;j k f

whenever (i 1; : : : ; i k ) and (j 1; : : : ; j k ) are re-orderings of one another.

Notice that
Ck (U;R) � Ck � 1(U;R) � Ck � 2(U;R) � � � � � C1(U;R):

So in particular, if f is of type Ck , then we know that the mixed partials all agree up to and
including order k.

Now let's make sure that we understand what Clairut's theorem is saying. For example, if
f : R3 ! R is of type C4, then the theorem doesnot say that all the fourth order derivatives are
the same (there are 81 fourth order derivatives). Rather, the theorem says the partial derivatives
of the same `type' are equivalent:

@xxyz f; @xyxz f; @xyzx f; @yxxz f; @yxzx f; @yzxx f;

@xxzy f; @xzxy f; @xzyx f; @zxxy f; @zxyx f; @zyxx f:

The point being that every partial derivative above consists of exactly two x-derivatives, one y-
derivative, and one z-derivative.

2.4.4 Multi-indices

When a function is of type Ck , then we know that in computing a k-th order derivative the order of
the derivatives does not matter, only the total number of derivatives we take with respect to each
variable. This suggests a very convenient notation. In the above example, we can write (2; 1; 1) to
capture the fact that we are di�erentiating the �rst variable twice, the second variable one, and
the third variable once. This leads us to the notion of a multi-index.

A multi-index � is a tuple of non-negative integers� = ( � 1; : : : ; � n ). The order of � is the sum
of its components

j� j = � 1 + � 2 + � � � + � n :

We de�ne the multi-index factorial to be

� ! = � 1!� 2! � � � � n !:

If x = ( x1; : : : ; xn ) 2 Rn then the multi-index exponential is

x � = x � 1
1 x � 2

2 � � � x � n
n

and if f : Rn ! R we write

@� =
@j� j f

@x� 1
1 @x� 2

2 � � � @x� n
n

:
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The multi-index factorial and exponential will be crucial pieces of notation in the following
section. For now, we would like to capitalize on partial derivative notation. So for example, if
f : R4 ! R and we endowR4 with the coordinates (x; y; z; w), then

@(0;0;0;1) f = @w f; @(0;1;1;0) f = @yz f; @(2;0;1;0) f = @xxz f; @(0;1;2;1) f = @yzzw f:

et cetera.

2.5 Taylor Series

2.5.1 A Quick Review

Before talking about how multivariate Taylor series work, let's review what we learned in the single
variable case. We have seen that the derivative can be used as a tool for linearly approximating a
function. If f is di�erentiable at a point a, then for x near a we have the approximation

f (x) � f (a) + f 0(a)(x � a):

Note that this is also sometimes written in terms of the distanceh = x � a from a, so that

f (a + h) � f (a) + f 0(a)h:

Again, the top equation is a function of the absolute position x, while the bottom equation is a
function of the relative distance h. The relationship between these two representations of Taylor
series are akin to the two equivalent de�nitions for the derivative at a:

f 0(a) = lim
x ! a

f (x) � f (a)
x � a

= lim
h! 0

f (a + h) � f (a)
h

:

Now one can extend the conversation beyond just linear approximations, and introduce quadratic,
cubic, and quartic approximations. More generally, given somen 2 N we can set pn;a (x) =

cnxn + cn � 1xn � 1 + � � � + c1x + c0 and ask what conditions on theck guarantee that f (k) (a) = p(k)
n;a (a).

This is a fairly straightforward exercise, and the student will �nd that

ck =
f (k) (a)

k!
; so that pn;a (x) =

nX

k=0

f (k) (a)
k!

(x � a)k :

In order to ensure that this is a good approximation, we need to look at the error termrn;a (x) =
f (x) � pn;a (x). In particular, for pn;a (x) to represent a goodk-th order approximation to f , we
should require that the remainder tends to zero faster thank-th order; that is,

lim
x ! a

rn;a (x)
(x � a)k = 0 :

There are many di�erent approximations to rn;a (x), which vary depending on the regularity of the
function (is f of type Cn or Cn+1 ?), or on the technique used to approximate the error. In general
we will only be working with C1 functions, so we are not going to concern ourselves too much
with regularity. It is quite a mess to introduce all of the technical approximations, so we content
ourselves with only deriving a single one, calledLagrange’s form of the remainder.
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Lemma 2.41: Higher Order Rolle's Theorem

Assume that f : R ! R is continuous on [a; b] and n + 1 times di�erentiable on [ a; b]. If
f (a) = f (b) and f (k) (a) = 0 for all k 2 f 1; : : : ; ng then there exists a c 2 (a; b) such that
f (n+1) (c) = 0.

Proof. All of the conditions of Rolle's theorem apply with f (a) = f (b), so there exists a� 1 2 (a; b)
such that f 0(� 1) = 0. Similarly, we know that f 0 is continuous on [a; b] and di�erentiable on
(a; b), and f 0(a) = f 0(� 1) = 0, so there exists � 2 2 (a; � 1) such that f 00(� 2) = 0. We can continue
inductively in this fashion, until f (n) (a) = f (n) (� k ), so that there exists c := � n+1 2 (a; � n ) � (a; b)
such that f (n+1) (c) = 0, as required.

Theorem 2.42: Taylor's Theorem with Lagrange Remainder

Suppose thatf is n + 1 times di�erentiable on an interval I with a 2 I . For eachx 2 I there
is a point c betweena and x such that

rn;a (x) =
f (n+1) (c)
(n + 1)!

(x � a)n+1 : (2.7)

Proof. Assume for the moment that x > a and de�ne the function

g(t) = rn;a (t) � rn;a (x)
(t � a)n+1

(x � a)n+1

so that g(a) = g(x) = 0. Writing rn;a (t) = f (t) � pn;a (t) we have

g(t) = f (t) � f 0(a)( t � a) �
f 00(a)

2
(t � a)2 � � � � �

f (n) (a)
n!

(t � a)n � rn;a (x)
(t � a)n+1

(x � a)n+1 :

It is straightforward to check that

g(k) (t) = f (k) (t)� f (k) (a)� f (k+1) (a)(x� a)�� � ��
f (n) (a)
(n � k)!

(t� a)n � k � rn;a (x)
(n + 1)!

(n + 1 � k)!
(t � a)n+1 � k

(x � a)n+1

so that g(k) (a) = 0 for all k = 1 ; : : : ; n. By the Higher Order Rolle's Theorem, we know there exists
a c 2 (a; x) such that g(n+1) (c) = 0, but this is precisely equivalent to

0 = g(n+1) (c) = f (n+1) (c) � rn;a (x)
(n + 1)!

(x � a)n+1

we we can re-arrange to get (2.7).

Corollary 2.43

If f is of type Cn+1 on an open interval I with a 2 I , then

lim
x ! a

rn;a (x)
jx � ajn

= 0 :
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Proof. Sincef is of type Cn+1 we know that f (n+1) is continuous onI . SinceI is open anda 2 I ,
we can �nd a closed interval J such that a 2 J � I . By the Extreme Value Theorem, there exists
M > 0 such that that jf (n+1) (x)j � M for all x 2 J . Since f is n + 1 times di�erentiable in a
neighbourhood ofa, Theorem 2.42 implies that

lim
x ! a

jrn;a (x)j
jx � ajn

= lim
x ! a

jf (n+1) (c)j
(n + 1)!

jx � ajn+1

jx � ajn
c depends on x

= lim
x ! a

M
(n + 1)!

jx � aj

= 0 :

The result then follows by applying the Squeeze Theorem to

�
jrn;a (x)j
jx � ajn

�
rn;a (x)
jx � ajn

�
jrn;a (x)j
jx � ajn

:

This corollary implies that the Taylor remainder is a good approximation, since the error van-
ishes faster than ordern. Moreover, in the proof we found that we could boundrn;a (x) as

jrn;a (x)j �
M

(n + 1)!
jx � ajn+1 (2.8)

for someM > 0. This allows us to determine error bounds on Taylor series.

Example 2.44

Let f (x) = sin( x) and g(x) = ex . Determine the number of terms needed in the Taylor series
to ensure that the Taylor polynomials at a = 0 are accurate to within 8 decimal places on
[� 1; 1].

Solution. This is a problem you might have if you worked for a classical calculator company. If
your calculator is only capable of holding eight signi�cant digits then you need only ensure accuracy
to eight digits, so you need to determine how many terms of the Taylor polynomial you need to
program.

For f (x) = sin( x) we know that regardless of how many derivatives we take,jf (k) (x)j � 1 for
all x, and since we are looking at the interval [� 1; 1], we know that jx � aj = jxj � 1. Substituting
this information into (2.8) we get that jrn;a (x)j � [(k + 1)!] � 1. We need to �nd a value of k such
that 1=(k + 1)! < 10� 8. The student can check that this �rst happens when k = 11.

Similarly, for g(x) = ex we know that g(k) (x) = ex , and on the interval [� 1; 1] we can bound
this as jg(k) (x)j < 3. We still have jx � aj < 1, so (2.8) gives usjrn;a (x)j � 3[(k + 1)!] � 1, which also
becomes smaller than 10� 8 when k = 11. �

2.5.2 Multivariate Taylor Series

Just like with the Multivariate Mean Value Theorem, we will introduce the multivariate Taylor
Series by examining what happens when we restrict our function to a line. For simplicity, assume
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that S � Rn is a convex set and choose some pointa = ( a1; : : : ; an ) 2 S around which we will
compute our Taylor series for f : S ! R. Let x0 = ( x1

0; : : : ; xn
0 ) 2 S be some point at which we

want to compute f (x0) and consider the line

 (t) = (1 � t)a + tx0 = a + t(x0 � a):

Pre-composingf by  we get the function g : R ! R; g(t) = f ( (t)). Notice that g(0) = f (a) and
g(1) = f (x). Furthermore, since g is a real-valued function of a single variable, it admits a Taylor
polynomial centred at 0, which can be evaluated att = 1:

g(1) =
nX

k=0

g(k) (0)
k!

+ remainder: (2.9)

Let's look at the derivatives of g. The �rst derivative is easily computed via the chain rule, and we
get

g0(t) = ( x0 � a) � r f (a + t(x0 � a)) :

If we think of r =
�

@
@x1

; : : : ; @
@xn

�
then we can de�ne a new operator

(x0 � a) � r = ( x1
0 � a1)

@
@x1

+ � � � + ( xn
0 � an )

@
@xn

;

and g0(t) = [( x0 � a) � r ] f (a + t(x0 � a)). Di�erentiating k-times in general will give us

g(k) (t) = [( x0 � a) � r ]k f (a + t(x0 � a)) :

Substituting this into (2.9) and evaluating at t = 0 we have

f (x) =
nX

k=0

[(x0 � a) � r ]k f (a)
k!

:

This is theoretically complete, but computationally quite messy. Let's see if we can get a better
grip on what these operators [(x0 � a) � r ]k look like. For the sake determining what this looks
like, let n = 2 and a = (0 ; 0), so that

[(x0 � a) � r ]2 f = [ x0 � r ] [x0f x + y0f y ]

= x0 [f xx + y0f xy ] + y0 [f yx + y0f yy ]

= x2
0f xx + x0y0f xy + y0x0f yx + y2

0f yy

= x (2;0
0 @(2;0) f + 2x (1;1)

0 @(1;1) f + x (0;2)
0 @(0;2) f:

Notice that we get a perfect correspondence between the coe�cient and the derivatives. For exam-
ple, the coe�cient of f yx is y0x0. The last line is written in multi-index notation, where the order
of every multi-index in 2. One can imagine this also works for generaln and generala, so that

[(x0 � a) � r ]k f =
X

j� j= k

k!
� !

(@� f ) (a) (x0 � a) � :

In conclusion, the equation for our multivariate Taylor polynomial is given by
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Multivariate Taylor Polynomial

f (x) =
X

j� j� n

(@� f ) (a)
� !

(x � a) � + rn;a(x)

Example 2.45

Determine the 2nd order Taylor polynomial for f (x; y) = sin( x2 + y2) about a = (0 ; 0).

Solution. We have collected the data in a handy table below:

j� j � � ! (x � a) � @� f @� f (a)

0 (0; 0) 1 1 sin(x2 + y2) 0

1 (1; 0) 1 x 2x cos(x2 + y2) 0

1 (0; 1) 1 y 2y cos(x2 + y2) 0

2 (2; 0) 2 x2 2 cos(x2 + y2) � 4x2 sin(x2 + y2) 2

2 (0; 2) 2 y2 2 cos(x2 + y2) � 4y2 sin(x2 + y2) 2

2 (1; 1) 1 xy � 4xy sin(x2 + y2) 0

Putting this information together, we get the relatively simple Taylor polynomial sin( x2 + y2) �
x2 + y2. �

Example 2.46

Determine the 2nd order Taylor polynomial for f (x; y) = xey at a = (0 ; 0).

Solution. Once again, we collate the data in the following table:

j� j � � ! (x � a) � @� f @� f (a)

0 (0; 0) 1 1 xey 0

1 (1; 0) 1 x ey 1

1 (0; 1) 1 y xey 0

2 (2; 0) 2 x2 0 0

2 (0; 2) 2 x2 xey 0

2 (1; 1) 1 xy ey 1

which gives us the Taylor polynomial xey � x + xy. �

Something interesting is happening here: We know that the Taylor series forex and sin(x) are

ex =
1X

k=0

xk

k!
; sin(x) =

1X

k=0

(� 1)kx2k+1

(2k + 1)!
:
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It is tempting to substitute the appropriate polynomials in ( x; y) into these expressions:

xey = x

" 1X

k=0

yk

k!

#

=
1X

k=0

xyk

k!

=
�
x + xy +

xy2

2
+

xy3

3!
+ � � �

�

sin(x2 + y2) =
1X

k=0

(� 1)k (x2 + y2)2k+1

(2k + 1)!

=
�
(x2 + y2) �

(x2 + y2)3

3!
+ � � �

�
:

Notice that to second order, these series both agree with what we computed above. Indeed, these
are the correct Taylor series. This follows from the fact that Taylor polynomials areunique; that is,
if we have an orderk polynomial approximation to a function whose error vanishes in orderk + 1,
then that polynomial is necessarily the Taylor polynomial. This also immediately implies that the
Taylor series of any polynomial is that polynomial itself.

2.5.3 The Hessian Matrix

We know that if f : Rn ! R is at least classC2, then there are n2 second-order partial derivatives
@ij f; i; j 2 f 1; : : : ; ng. Moreover, the mixed partial derivatives commute, so that @ij f = @ji f . This
information can all be conveniently written in terms of a matrix:

De�nition 2.47

If f : Rn ! R is of classC2 then the Hessian matrix of f at a 2 Rn is the symmetric
n � n-matrix of second order partial derivatives:

H (a) =

0

B
B
B
@

@11f (a) @12f (a) � � � @1n f (a)
@21f (a) @22f (a) � � � @2n f (a)

...
...

. . .
...

@n1f (a) @n2f (a) � � � @nn f (a)

1

C
C
C
A

:

The Hessian matrix makes writing down the Taylor series of a function very compact. Notice
that the �rst order terms of the Taylor expansion are given by

X

j� j=1

1
� !

(@� f ) (a)(x0 � a) � = r f (a) � (x0 � a):

Similarly, the second order terms involve the second-order partials and can be written as
X

j� j=2

2
� !

(@� f ) (a)(x0 � a) � = ( x0 � a)T H (a)(x0 � a);

so that the second-order Taylor polynomial is just

f (x) = f (a) + r f (a)(x � a) +
1
2

(x � a)T H (a)(x � a) + O(

 x3


 ):
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Example 2.48

Determine the Hessian of the functionf (x; y; z) = x2y + eyz at the point (1 ; 1; 0).

Solution. We start be computing the gradient r f = (2 xy; x 2 + zeyz ; yeyz). The Hessian is now the
matrix of second order partial derivatives, and may be computed as

H (x; y; z) =

0

@
2y 2x 0
2x z2eyz eyz(1 + zy)
0 eyz(1 + zy) y2eyz

1

A :

Evaluating at the point ( x; y; z) = (1 ; 1; 0) we get

H (1; 1; 0) =

0

@
2 2 0
2 0 1
0 1 1

1

A :

We can take one extra step and evaluate the gradient at this pointr f (1; 1; 0) = (2 ; 1; 1), and write
down the Taylor series:

f (x) = f (1; 1; 0) + r f (1; 1; 0) �

0

@
x � 1
y � 1

z

1

A +
1
2

(x � 1; y � 1; z)H (1; 1; 0)

0

@
x � 1
y � 1

z

1

A + O(kxk3)

= 2 + (2 ; 1; 1)

0

@
x � 1
y � 1

z

1

A +
1
2

(x � 1; y � 1; z)

0

@
2 2 0
2 0 1
0 1 1

1

A

0

@
x � 1
y � 1

z

1

A + O(kxk3)

= 2 + 2( x � 1) + ( y � 1) + z + ( x � 1)2 + 2( x � 1)(y � 1) + ( y � 1)z +
1
2

z2 + O(kxk3): �

We can make even further strides if we allow ourselves to import a powerful theorem from linear
algebra:

Theorem 2.49: Spectral Theorem

If A : Rn ! Rn is a symmetric matrix then there exists an orthonormal basis consisting of
eigenvectors ofA.

Writing A in the basis guaranteed by the Spectral Theorem is called theeigendecomposition
of A. In the eigendecomposition, the matrix A is a diagonal matrix with the eigenvalues on the
diagonal. We will make use of the spectral theorem in the following section.

2.6 Optimization

When dealing with di�erentiable real-valued functions of a single variable f : [a; b] ! R we had
a standard procedure for determining maxima and minima. This amounted to checking critical
points on the interior ( a; b) and then checking the boundary points. The necessity of checking the
boundary separately arose from the non-di�erentiability of the function at the boundary. In the
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multiple dimension regime, we will now be looking at functions f : S � Rn ! R. Once again,
we will use di�erentiability to establish a necessary condition for extrema to occur on the interior,
and check the boundary separately. However, unlike the former example where the boundary
consisted of two points f a; bg, in multiple dimensions our boundaries become much larger. This
will necessitate and entirely di�erent approach to determining maxima on the boundary.

For now, we recall the de�nition of what it means to be a local maximum and minimum.

De�nition 2.50

Let f : Rn ! R.

1. We say that a 2 Rn is a local maximum of f if there exists a neighbourhoodU � Rn

containing a such that f (x) � f (a) for all x 2 U.

2. We say that a 2 Rn is a local minimum of f if there exists a neighbourhoodU � Rn

containing a such that f (x) � f (a) for all x 2 U.

When n = 1 this is exactly our usual de�nition of a maximum/minimum point.

2.6.1 Critical Points

De�nition 2.51

If f : Rn ! R is di�erentiable, we say that c 2 Rn is a critical point of f if r f (c) = 0. a If
c is a critical point, we say that f (c) is a critical value. All points which are not critical are
termed regular points.

aMore generally, if f : Rn ! Rk then we say that c 2 Rn is a critical point if D f (c) does not have maximal
rank.

We see that the above de�nition of a critical point agrees with the our usual de�nition when
n = 1; namely, that f 0(c) = 0.

Example 2.52

Determine the critical points of the following functions:

f (x; y) = x3 + y3; g(x; y; z) = xy + xz + x

Solution. The gradient of f is easily determined to ber f (x; y) = (3 x2; 3y2). Setting this to be
(0; 0) implies that 3x2 = 0 = 3 y2 so that the only critical point is ( x; y) = 0. For the function
g we compute r g(x; y; z) = ( y + z + 1 ; x; x ). Setting this equal to zero implies that x = 0 while
y + z + 1 = 0. Thus there is an entire line worth of critical points. �

Notice that critical points do not need to be isolated: one can have entire curves or planes
represent critical points. The important property of critical points is that they give a schema for
determining when a point is a maximum or minimum, through the following theorem:
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Proposition 2.53

If f : [a; b] ! R is di�erentiable and c is interior point which is either a local maximum or
local minimum, then necessarilyf 0(c) = 0.

Proof. We shall do the proof for the case whenc corresponds to a local maximum and leave the proof
of the other case to the student. Sincec is a local maximum, we know there is some neighbourhood
I � D of c such that for all x 2 I; f (x) � f (c).

Since c corresponds to a maximum off , for all h > 0 su�ciently small so that c + h 2 I , we
have that f (c+ h) � f (c). Hencef (c+ h) � f (c) � 0, and sinceh is positive, the di�erence quotient
satis�es f (c+ h) � f (c)

h � 0. In the limit as h ! 0+ we thus have

lim
h! 0+

f (c + h) � f (c)
h

� 0 (2.10)

Similarly, if h < 0 we still have f (c + h) � f (c) � 0 but now with a negative denominator our
di�erence quotient is non-negative and

lim
h! 0�

f (c + h) � f (c)
h

� 0: (2.11)

Combining (2.10) and (2.11) and using the fact that f is di�erentiable at c, we have

0 � lim
h! 0�

f (c + h) � f (c)
h

= f 0(c) = lim
h! 0+

f (c + h) � f (c)
h

� 0

which implies that f 0(c) = 0.

Of course, we know that this proposition is only necessary, not su�cient; that is, there are
critical points which do not yield extrema. The quintessential example is the function f (x) = x3,
which has a critical point at x = 0, despite this point being neither a maximum nor minimum. A
more interesting example, which we leave for the student, is the functionf (x) = x sin(x), which
has in�nitely many critical points but no local maxima or minima.

Our theme for the last several sections has been to adapt our single-variable theorems to mul-
tivariate theorems by examining the behaviour of functions through a line. This part will be no
di�erent.

Corollary 2.54

Let U � Rn . If f : U ! R is di�erentiable and c 2 U is either a local maximum or minimum
of f , then r f (c) = 0.

Proof. We do the case wherec is a maximum and leave the other case as an exercise. Sincec is a
maximum, we know there is a neighbourhoodU � Rn containing c such that f (x) � f (c) for all
x 2 U. Since this holds in general, it certainly holds locally along any line throughc; that is, for
any unit vector u 2 Rn there exists � > 0 such that for all t 2 (� �; � ), we have

g(t) := f (c + tu) � f (c):
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Sinceg attains its maximum at t = 0 (an interior point), Proposition 2.53 implies that g0(0) = 0.
Using the chain rule, this implies that r f (c) � u = 0. This holds for all unit vectors u, so in
particular if we let u = ei = (0 ; : : : ; 1; : : : ; 0) be one of the standard unit normal vectors, then

0 = r f (c) � ei = @x i f (c):

This holds for every standard unit vector, so r f (c) = 0.

Once again, this theorem will be necessary, but not su�cient. For example, consider the func-
tions f 1(x; y) = x2 + y2 and f 2(x; y) = y2 � x2. Both function have critical points at ( x; y) = (0 ; 0),
however the former is a minimum while the later is not. In particular, the latter function gives an
example of asaddle point. Graphing functions is a terrible way to determine maxima and minima
though, so we need to develop another criteria for determining extrema. This comes in the form of
the second derivative test.

Proposition 2.55

Let f : Rn ! R be classC2 in a neighbourhood of a critical point c.

1. If H (c) has all positive eigenvalues, thenc is a local minimum,

2. If H (c) has all negative eigenvalues, thenc is a local maximum,

3. If H (c) has a mix of positive and negative eigenvalues, thenc is a saddle point.

We will not give the proof of this proposition, but instead present a heuristic which essentially
captures the idea of the proof. Recall from our discussion at the end of 2.5.3 thatH (c) admits an
eigendecomposition with eigenvectorsf � i g

n
i =1 . As r f (c) = 0, the second-order Taylor polynomial

tells us that in this basis, our function is approximately

f (x) = f (c) + ( x � c)T H (c)(x � c) = f (c) +
nX

i =1

� i (x i � ci )2:

If all of the eigenvalues are positive, this function is approximately an upward facing paraboloid
centered at c, meaning that it has a minimum. Similarly, if all the eigenvalues are negative, it is a
downward facing paraboloid and hencec is a maximum. In the case where the� i are of mixed sign,
we have that the function looks like a maximum in the direction of the eigenvectors corresponding
to positive eigenvalues, and a minimum in the direction of eigenvectors corresponding to negative
eigenvalues, and hence is a saddle point.

Example 2.56

Determine the critical points of the function f (x; y) = x4 � 2x2 + y3 � 6y and classify each
as a maxima, minima, or saddle point.

Solution. The gradient can be quickly computed to ber f (x; y) = (4 x(x2 � 1); 3(y2 � 2)). The �rst
component is zero whenx = 0 ; � 1 and the second component is zero wheny = �

p
2, giving six
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critical points: (0 ; �
p

2); (� 1; �
p

2), and (1; �
p

2). The Hessian is easily computed to be

H (x; y) =
�

12x2 � 4 0
0 6y

�
:

Since the matrix is diagonal, its eigenvalues are exactly the 12x2 � 4 and 6y. Thus the maximum
is (0; �

p
2), the minima are (� 1;

p
2), and the other three points are saddles. �

There is one additional kind of critical point which can appear. The above discussion of maxima,
minima, and saddle points amounted to the function looking as though it had either a maximum
or a minimum in every direction, and whether or not those directions all agreed with one another.
This has not yet captured the idea of an inection point.

De�nition 2.57

If f : Rn ! R is C2 and c is a critical point of f , then we say that c is a degenerate critical
point if f is rank H (c) < n .

Example 2.58

Show that the function f (x; y) = y2 � x3 has a degenerate critical point at (x; y) = (0 ; 0).

Solution. The gradient is r f (x; y) = ( � 3x2; 2y) which indeed has a critical point at (0; 0). Fur-
thermore, the Hessian is

H (x; y) =
�

� 6x 0
0 2

�
; ) H (0; 0) =

�
0 0
0 2

�

so H (0; 0) has rank 1, and we conclude that (0; 0) is a degenerate critical point. �

In the special case of functionf : Rn ! R, one can use the determinant of the Hessian to
quickly ascertain whether critical points are maxima or minima.

Proposition 2.59

Let f : R2 ! R and c be a critical point.

1. If det H (c) < 0 then c is a saddle point

2. If det H (c) > 0:

(a) If @11f > 0 then c is a minimum,

(b) If @11f < 0 then c is a maximum.

If det H (c) = 0 then this is inconclusive.

Proof. For any matrix, the determinant is the product of the eigenvalues (this follows immediately
from the spectral theorem and the fact that the determinant is basis independent). Sincef : R2 ! R
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the Hessian has two eigenvalues. If the determinant is negative, this means that the two eigenvalues
have di�erent signs and hence the critical point is a saddle point. If the determinant is positive,
both eigenvalues have the same sign, and we need only determine if both are positive or negative.
This last check can be done by looking at@11f .

2.6.2 Constrained Optimization

The previous section introduced the notion of critical points, which can be used to determine
maxima/minima on the interior of a set. However, what happens when we are given a set with
empty interior? Similarly, if one is told to optimize over a compact set, it is not su�cient to only
optimize over the interior, one must also check the boundary.

We have seen problems of constrained optimization before. A typical example might consist of
something along the lines of

\You are building a fenced rectangular pasture, with one edge located along a river.
Given that you have 200m of fencing, �nd the dimensions which maximize the volume
of the pasture."

x

y

x

Figure 23: A visualization of simple optimization problem.

Translating this problem into mathematics, we let x be the length andy be the width of the pasture.
We must then maximize the function f (x; y) = xy subject to the constraint 2x + y = 200. The
equation 2x + y = 200 is a line in R2, so we are being asked to determine the maximum value of
the function f along this line. The way that this was typically handled in �rst year was to use
the constraint to rewrite one variable in terms of another, and use this to reduce our function to a
single variable. For example, if we writey = 200 � 2x then

f (x; y) = x(200� 2x) = 200x � 2x2:

The lone critical point of this function occurs at x = 50, which gives a value ofy = 100, and one
can quickly check that this is the max.

Another technique that one could employ is the following: Recognizing that 2x + y = 200 is
just a line in R2, we can parameterize that line by a function (t) = ( t; 200� 2t). The composition
f �  is now a function in terms of the independent parametert, yielding f ( (t)) = 200 t � 2t2 which
of course gives the same answer.

The fact that our constraint was just a simple line made this problem exceptionally simple.
What if we wanted to optimize over a more di�cult one-dimensional space, or even a two dimen-
sional surface? Once again we can try to emulate the procedures above, and we may even meet
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with some success. However, there is a more novel way of approaching such problems, using the
method of Lagrange multipliers.

Theorem 2.60

Let f; G : Rn ! R be C1 functions, and set S = G� 1(0). If the restriction f : S ! R has a
maximum or minimum at a point c 2 S and r G(c) 6= 0 then there exists � 2 R such that

r f (c) = � r G(c):

Proof. Let  : (� �; � ) ! S be any path such that  (0) = c, so that  0(0) is a vector which is tangent
to S at c. Since  (t) 2 S for all t 2 (� �; � ), by the de�nition of S we must have G( (t)) = 0.
Di�erentiating at t = 0 yields the identity

0 = r G(c) �  0(0):

On the other hand, since c is a local maximum/minimum of f we have that t = 0 is a local
maximum/minimum for f ( (t)) and hence is a critical point. Using the chain rule, this implies
that

0 =
d
dt

�
�
�
�
t=0

f ( (t)) = r f (c) �  0(0):

Since  0(0) can be chosen arbitrarily, this implies that both r G(c) and r f (c) are perpendicular
to tangent plane at c, and thus they must be proportional4; that is, there exists some� 2 R such
that r f (c) = � r G(c) as required.

Example 2.61

Use the method of Lagrange multipliers to solve the problem given in Figure 23.

Solution. The constraint in our fencing problem is given by the function G(x; y) = 2 x + y � 200 = 0.
We can easily computer f (x; y) = ( y; x) and r G(x; y) = (2 ; 1), so by the method of Lagrange
multipliers, there exists � 2 R such that r f (x; y) = � r G(x; y); that is,

�
y
x

�
= �

�
2
1

�
:

We thus know that y = 2 �; x = � , and substituting this into 2 x � y = 200 gives 4� = 200. Thus
� = 50, from which we conclude that y = 2 � = 100 and x = � = 50 as required. �

Example 2.62

Maximize the function f (x; y; z) = xyz on the ellipsoid x2 + 2y2 + 3z2 = 1.

4Here we are sweeping some stu� under the rug. In particular, one must believe us that since G is C1 then
S = G� 1(0) is a `smooth' surface, so that its tangent plane has dimension n � 1.
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Solution. The constraint equation is given byG(x; y; z) = x2+2y2+3z2 � 1 = 0. When we compute
our gradients, the method of Lagrange multipliers gives the following system of equations:

yz = 2 �x

xz = 4 �y

xy = 6 �z

If we combine this with the constraint x2 + 2y2 + 3z2 = 1 we have four equations in four unknowns,
though all the equations are certainly non-linear! Herein we must be clever, and start manipulating
our equations to try and solve for (x; y; z). Notice that if we play with the term xyz then depending
on how we use the associativity of multiplication, we can get an additional set of conditions. For
example

x(yz) = x(2�x ) = 2 �x 2

y(xz) = y(4�y ) = 4 �y 2

z(xy) = z(6�z ) = 6 �z 2

and all of these must be equal. We can make a small simpli�cation by removing a factor of 2 to get

�x 2 = 2 �y 2 = 3 �z 2: (2.12)

Case 1 (� = 0): If � = 0 then yz = xz = xy = 0. This immediately implies that two of
x; y, or z must be zero, sof (x; y; z) = xyz = 0. If x = y = 0 then the constraint equation gives�

0; 0; � 1p
3

�
. If x = z = 0 then

�
0; � 1p

2
; 0

�
and if y = z = 0 then ( � 1; 0; 0). So all of these points

give a result of f (x; y; z) = 0 and are candidates for maxima/minima.

Case 2 (� 6= 0): If � 6= 0 then we can divide (2.12) by � to get that x2 = 2y2 = 3z2. Substituting
this into the constraint equation we get 1 = x2 + x2 + x2 = 3x2 so that x = � 1p

3
, which we can use

to �nd y and z. This gives us eight possible critical points corresponding to the following choice of
signs:

x = �
1

p
3

; y = �
1

p
6

; z = �
1
3

:

There are only two possible values off for these points, namelyf (x; y; z) = � 1
9
p

2
. Since these are

both either bigger than 0 or smaller than 0, these are the corresponding global maxima/minima of
the function. �

Example 2.63

Determine the maximum and minimum of the function f (x; y) = x2 + 2y2 on the disk
x2 + y2 � 4.

Solution. We begin by determining critical points on the interior. Here we haver f (x; y) = (2 x; 4y)
which can only be (0; 0) if x = y = 0. Here we havef (0; 0) = 0.

Next we determine the extreme points on the boundaryx2 + y2 = 4, for which we set up the
constraint function G(x; y) = x2 + y2 � 4 with gradient r G(x; y) = (2 x; 2y). Using the method of
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Lagrange multipliers, we thus have

2x = 2 �x

4y = 2 �y

Case 1 (x 6= 0): If x 6= 0 then we can solve 2x = 2 �x to �nd that � = 1. This implies that
y = 2y which is only possible if y = 0. Plugging this into the constraint gives x2 = 4 so that
x = � 2, so our candidate points are (� 2; 0), which give valuesf (� 2; 0) = 4.

Case 2 (y 6= 0): If y 6= 0 then we can solve 4y = 2 �y to �nd that � = 2. This implies that
2x = 4x which is only possible if x = 0. Solving the constraint equation thus gives the candidates
(0; � 2), which gives valuesf (0; � 2) = 8.

The case where� = 0 gives no additional information. Hence we conclude that the minimum
occurs at (0; 0) with a value of f (0; 0) = 0, while the maximum occurs at the two points (0; � 2)
with a value of f (0; � 2) = 8. �

If multiple constraints are given, the procedure is similar, except that we now need additional
multipliers. More precisely, if G : Rn ! Rm is given by G(x) = ( G1(x); : : : ; Gm (x)), we set
S = G� 1(0), and we are tasked with optimizing f : S ! R, then if c 2 S is a maximum or
minimum there exist � 1; : : : � m 2 R such that

r f (c) =
mX

i =1

� i r Gi (c):

3 Local Invertibility

Given the plethora of ways of de�ning functions, curves, or surfaces overRn , a natural question
which arises is whether such characterizations are (locally) invertible. For example, given a function
f 2 C1(R2; R2), (x; y) 7! (xy; xey), is there a di�erentiable function f � 1 : R2 ! R2 which inverts
it everywhere? If not, can we �nd a function which at least inverts it locally, or perhaps conditions
which tell us which points are troublesome for inverting?

Alternatively, what if one is given the zero locus of aC1 function F (x; y) = 0 and is asked to
determine y as a function of x? What conditions guarantee that this is possible? This section is
dedicated to elucidating this information.

3.1 Implicit Function Theorem

We begin by analyzing the latter case �rst; namely, given aC1 function F : Rn+ k ! Rk , when can
we solve the equation

F(x1; : : : ; xn ; y1; : : : ; yk ) = 0

for the yi as functions of thex i ? More precisely, do there existC1 functions f i : Rn ! R such that
yi = f (x1; : : : ; xn ). In this great of generality, it can be di�cult to see the forest for the trees, so
we treat the k = 1 case as a special example to glean some insight into the problem.
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3.1.1 Scalar Valued Functions

Consider a function F 2 C1(Rn ; R) and endow Rn+1 with the coordinates (x1; : : : ; xn ; y), whose
purpose is to make our exposition clear with regards to which variable is solved in terms of the
other variables. Can we solve the equationF (x; y) = 0 for y as a function of x? Alternatively, can
we realizeF (x; y) = 0 as the graph of a function y = f (x)? Some simple examples suggest that
the answer could be yes.

Example 3.1 Let F : R2 ! R be given by F (x; y) = ( x2 + 1) y3 � 1. The zero-locus
F (x; y) = 0 can be solved in terms ofy to yield

y = 3

r
1

x2 + 1
;

and this holds for all x; y 2 R2. N

Unfortunately, it turns out that such examples are exceptionally rare and in general the answer
is no:

Example 3.2 Let F (x; y) = x2 + y2 � 1. The zero-locusF (x; y) = 0 is equivalent to the
circle x2 + y2 = 1. If one tries to solve y as a function of x, we get y = �

p
1 � x2. In

particular, for each x-value there are two possibley-values. Since functions must map a
single input to a single output, this means that y cannot be written as a function of x. N

� 4 � 2 2 4

0:4

0:6

0:8

1

x

y

(a) A plot of the graph ( x2 +1) y3 = 1. It is easily
to believe that this curve can be written as the
graph of a function.

� 1 1

� 1

1

(b) The circle x2 + y2 = 1 cannot be written as
the graph of a function: It fails the vertical line
test.

The primary di�erence between Examples 3.1 and 3.2 is that the former was in a sense \injec-
tive" with respect to y (since y3 is one-to-one) while the latter was not (y2 is two-to-one). This
example in hand, the situation seems rather dire: even such simple examples preclude the hope of
solving one variable in terms of another. Nonetheless, one could argue that there are parts of the
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circle x2+ y2 = 1 that look like the graphs, one beingy =
p

1 � x2 while the other is y = �
p

1 � x2.
If it was our lofty goal of solving y as a function ofx everywhere that presented a problem, perhaps
by restricting ourselves to local solutions we might make more progress.

Since calculus is, in many ways, the study of functions by looking at their linear approximations,
let's see what happens in the simplest non-trivial case whereF (x; y) is linear:

F (x; y) = � 1x1 + � � � + � nxn + �y n + c =
nX

i =1

� i x i + �y + c:

In this case, it is easy to see that we can solve fory as a function of x so long as� 6= 0. Now recall
that if F (x; y) is a (not necessarily linear) C1 function, and (a; b) satis�es F (a; b) = 0, then the
equation of the tangent hyperplane at (a; b) is given by

@F
@x1

(a; b)x1 + � � � +
@F
@xn

(a; b)xn +
@F
@y

(a; b)y + d

= r xF (a; b) � x +
@F
@y

(a; b)y + d = 0

for some constant d. By analogy, @F
@y(a; b) plays the role of � , which suggests that so long as

@F
@y(a; b) 6= 0, y should be solvable as a function ofx in a neighbourhood of (a; b).

Aside: Recall that in single variable calculus, a continuously di�erentiable function f : R ! R
which satis�es f 0(x) 6= 0 for all points x in a neighbourhood of a point p is injective on that
neighbourhood. This is certainly compatible with our notion of \injectivity" above.

Theorem 3.3

If F (x; y) is C1 on some neighbourhoodU � Rn+1 of the point (a; b) 2 Rn+1 , F (a; b) = 0, and
@F
@y(a; b) 6= 0, then there exists an r 2 R� 0 together with a unique C1 function f : Ba(r ) ! R
such that F (x; f (x)) = 0 for all x 2 Ba(r ).

Proof. We break our proof into several steps: we begin by showing that there is anr > 0 such that
for each x0 2 Ba(r ) there exists a uniquey0 such that F (x0; y0) = 0. We call the mapping which
takes x0 7! y0 the function f (x ; y). After this, we show that this function is actually di�erentiable.

Existence and Uniqueness: This spirit of this part of the proof is actually akin to the proof of
injectivity mentioned in the previous aside. Without loss of generality, assume that @F

@y(a; b) > 0,
so that there exists r1 > 0 such that @yF > 0 on the neighbourhoodBa;b(r1) � Rn+1 . By taking
smaller r1 if necessary, we can ensure thatBa;b(r ) � U.

Now the positivity of @yF on Ba;b(r ) ensures that

F (a; b� r1) < 0; F (a; b+ r1) > 0:

Once again, by continuity there exists � 1; � 2 > 0 such that F (x; b� r1) < 0 for all x 2 Ba(� 1) and
F (x; b + r1) > 0 for all x 2 Ba(� 2). Let r = min f r1; � 1; � 2g, so that for any �xed x0 2 Ba(r ) we
have F (x0; b� r1) < 0 and F (x0; b+ r1) > 0. By the single variable Intermediate Value Theorem,
there is at least oney0 2 Bb(r ) such that F (x0; y0) = 0. Furthermore, because F (x0; y) is strictly
increasing as a function ofy, this y is unique by the Mean Value Theorem.
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x

y

(a; b)

(a) The graph of F (x; y) = x2 + y2 � 1, wherein
the blue represents whereF (x; y) < 0 and the red
where F (x; y) > 0. The arrows are the values of
@F
@y.

x

y

� 1

� 2

r1

x0

(b) Notice how the bottom of the rectangle lies
entirely within the blue, and the top lies entirely
within the red.

Di�erentiability: Fix some x0 2 Ba(r ), set y0 = f (x0), and chooseh 2 R su�ciently small so
that h i = hei satis�es x0 + h i 2 Ba(r ). De�ne k = f (x0 + h i ) � f (x0) to be the i th di�erence
quotient, so that y0 + k = f (x0 + h i ). Now F (x0 + h i ; y0 + k) = F (x0; y0) = 0 since both points lie
in Ba(r ), so by the Mean Value Theorem there exists somet 2 (0; 1) such that

0 = F (x0 + h i ; y0 + k) � F (x; y0) = h
@F
@xi

(x0 + th i ; y0 + tk ) + k
@F
@y

(x0 + th i ; y0 + tk ):

Re-arranging we can write

f (x0 + h i ) � f (x0)
h

=
k
h

= �
@F
@xi

(x0 + th i ; y + tk )
@F
@y(x0 + th i ; y0 + tk )

:

As the quotient on the right-hand-side consists of continuous functions and@F
@y 6= 0 in Ba;b(r ),

taking the h ! 0 limit yields
@f
@xi

= �
@F
@xi

(x0; y0)
@F
@y(x0; y0)

; (3.1)

which is a continuous function.

A useful consequence of the proof of Theorem 3.3 is equation (3.1) which gives a formula for the
partial derivatives of f (x). This is not surprising though, since if y = f (x) satis�es F (x; f (x)) = 0
then we may di�erentiate with respect to x j to �nd that

0 = @j F + @n+1 F@j f; ) @j f = �
@j F

@n+1 F

which agrees with what we found in the course of the proof.

Recall that when implicit di�erentiation is used in �rst year calculus, we wave our hands and
tell the student to assume that what we are doing is kosher. The Implicit Function Theorem is the
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theorem which justi�es the fact that this can be done in general (though naturally only at the places
where the theorem actually applies). Furthermore, while equation (3.1) is useful theoretically, it
e�ectively amounts to implicit di�erentiation, which is what we will often use to actually compute
these derivatives.

Corollary 3.4

If F 2 C1(Rn+1 ; R) satis�es r F 6= 0, then for every x0 2 S = f x : F (x) = 0 g there is a
neighbourhoodN containing x0 such that S \ N is the graph of a C1 function.

This corollary is of course immediate. The fact that r F 6= 0 means that at every point, one of
the components@j F 6= 0. We may then apply Theorem 3.3 to solve forx j in terms of the remaining
variables, and the result follows.

Example 3.5 Recall that the circle de�ned by the zero locus of F (x; y) = x2 + y2 � 1
cannot globally be solved for eitherx or y. However, r F (x; y) = (2 x; 2y), which means that
whenevery 6= 0 we may determine y in terms of x, and vice versa. Indeed, this is what we
expect, since any neighbourhood about the points (0; � 1) is necessarily two-to-one in terms
of y. Furthermore, if y 6= 0, let y = f (x) be the local solution for y in terms of x. From
equation (3.1) the derivative df

dx is then

df
dx

= �
@1F
@2F

= �
2x
2y

= �
x
y

:

This agrees with both implicit di�erentiation as well as explicit di�erentiation of y =
�

p
1 � x2, and is left as an exercise for the student. N

Example 3.6

Consider the function F (x; y; z) = (2 x + y3 � z2)1=2 � cos(z). If S = f � 1(0), determine which
variables may be determined by the others in a neighbourhood of (1; � 1; 0) and compute the
corresponding partial derivatives.

Solution. First notice that F (1; � 1; 0) = 0 so that this point is in S. We need to determine which
partial derivatives are non-zero at (1; � 1; 0), so we compute to �nd

r F =
1

p
2x + y3 � z2

�
1; 3

2y2; � z +
p

2x + y3 � z2 sin(z)
�

:

At the point (1 ; � 1; 0) this reduces to r F (1; � 1; 0) = (1 ; 3=2; 0), so we may �nd C1 functions f
and g such that x = f (y; z) and y = g(x; z), but it is not possible to solve for z in a neighbourhood
of (1; � 1; 0).
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For the partial derivatives, we start with x = f (y; z).

@f
@y

= �
@yF
@xF

= �
3
2

y2

@f
@z

= �
@zF
@xF

= z � sin(z)
p

2x + y3 � z2:

Similarly, for y = g(x; z) we have

@g
@x

= �
@xF
@yF

= �
2

3y2

@g
@z

= �
@zF
@yF

=
2z � 2 sin(z)

p
2x + y3 � z2

3y2 :

Again, the student may check that this is consistent with implicit di�erentiation. �

3.1.2 The General Case

The general case of aC1 function F : Rn+ k ! Rk is not much more di�cult: The major change
will be evaluating what the analogous condition to @F

@y 6= 0 should be. Let x = ( x1; : : : ; xn ) and
y = ( y1; : : : ; yk ). We once again return to the case whereF (x; y ) is a linear function. In this case,
let A 2 M k � n (R) and B 2 M k � k (R) be real matrices, and de�ne F (x; y ) = Ax + B y + c for some
c 2 Rk . If ( x0; y0) is some point whereF (x0; y0) = 0, then we can expressy as a function of x if
and only if the matrix B is invertible.

If F (x; y ) is now a general function, the setF (x; y ) = 0 de�nes at surface of dimension at most
n in Rn+ k . Let F (x; y ) = ( F1(x ; y ); : : : ; Fk (x ; y )) for C1 functions Fi : Rn+ k ! R. The Jacobian
of F (x; y ) is given by

dF =

2

6
4

@F1
@x1

� � � @F1
@xn

...
. . .

...
@Fk
@x1

� � � @Fk
@xn

�
�
�
�
�
�
�

| {z }
A(x ;y )2 M k � n (C1 (Rn + k ))

@F1
@y1

� � � @F1
@yk

...
. . .

...
@Fk
@y1

� � � @Fk
@yk

3

7
5

| {z }
B (x ;y )2 M k � k (C1 (Rn + k ))

so that the tangent plane to F � 1(0) at ( x0; y0) is given by A(x0; y0)x + B (x0; y0)y + d = 0. This

tells us that our analogy to @F
@y 6= 0 from the single-variable case should now be changed to

�
@Fi
@yj

�

ij
should be an invertible function.

Theorem 3.7: General Implicit Function Theorem

Let F : Rn+ k ! Rn be a C1 function, and write ( x1; : : : ; xn ; y1; : : : ; yk ) for the coordinates

in Rn+ k . If ( a; b) satis�es F (a; b) = 0 and
�

@Fi
@yj

�

ij
is invertible, there exists r > 0 and a

unique C1 function f : B r (a) ! Rk such that for all x 2 B r (a), F (x; f (x)) = 0.

The proof of this theorem is done via induction onk, but it is quite messy and not particularly
enlightening so we omit the proof. Of more immediate interest is whether we can determine an
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equation for the partial derivatives of the f k (x). The boring answer to this is that we simply
di�erentiate the equation F (x; f (x)) = 0 with respect to x j to determine the result, but this does
not clear things up as much as a simple example.

Example 3.8

Consider the function

F(x; y; u; v) =
�

x2 � y2 � u3 + v2 + 4
2xy + y2 � 2u2 + 3v4 + 8

�
:

If S = F � 1(0), show that (u; v) may be expressed as functions of (x; y) in a neighbourhood
of (2; � 1; 2; 1) and compute the derivatives of those functions.

Solution. The (u; v) derivatives of F are given by

d(u;v )F =
�

� 3u2 2v
� 4u 12v3

�
; ) d(u;v )F(2; � 1; 2; 1) =

�
� 12 2
� 8 12

�

which has determinant � 128 6= 0 and so is invertible. By Theorem 3.7 we know that (u; v) may
thus be determined as functions of (x; y) in a neighbourhood of this point; say u = g1(x; y) and
v = g2(x; y).

Now in order to determine the derivatives, we di�erentiate the function F(x; y; u; v) implicitly
with respect to x and y, keeping in mind that u = g1(x; y) and v = g2(x; y). We thus have

�
2x � 3u2 @u

@x+ 2v @v
@x

2y � 4u @u
@x+ 12v3 @v

@x

�
= 0

,
�

� 3u2 2v
� 4u 12v3

� � @u
@x
@v
@x

�
=

�
� 2x
2y

�

,
� @u

@x
@v
@x

�
=

�
� 3u2 2v
� 4u 12v3

� � 1 �
� 2x
� 2y

�

,
� @u

@x
@v
@x

�
= 1

8uv � 36u2v3

�
� 24xv3 + 4vy
� 8ux + 6u2y

�
:

Note that this solution makes sense in spite of the fact that theu and v appear in the solution,
sinceu = g1(x; y) and v = g2(x; y) implies that these are functions ofx; y alone.

�

3.1.3 The Inverse Function Theorem

If we are clever, we can use the Implicit Function Theorem to say something about invertibilty.
Consider for example a functionF : R2 ! R and its zero locusS = F � 1(0). If both @xF and
@yF are non-zero at a point (a; b), the Implicit Function Theorem implies that we can write y in
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terms of x and vice-versa, in a neighbourhood of (a; b). More precisely, there existsf; g such that
y = f (x) and x = g(y) locally.

By taking a su�ciently small neighbourhood around ( a; b), we can guarantee that both f and
g are injective (convince yourself this is true), and so by single variable results, bothf and g have
inverses. For example, this means thatf � 1(y) = x. But the Implicit Function Theorem also told
us that the function g satisfying g(y) = x was unique, so necessarilyg = f � 1.

We conclude that the Implicit Function Theorem might be able to say something about deter-
mining when a function is invertible. This culminates in the following theorem:

Theorem 3.9: The Inverse Function Theorem

Let U; V � Rn and �x some point a 2 U. If f : U ! V is of classC1 and Df (a) is invertible,
then there exists neighbourhoods~U � U of a and ~V � V of f (a) such that f j ~U : ~U ! ~V is
bijective with C1 inverse (f jU ) � 1 : ~V ! ~U. Moreover, if b = f (a) then the derivative of the
inverse map is given by

[D f � 1](b) = [ D f (a)] � 1: (3.2)

It turns out that the Inverse Function Theorem and the Implicit Function Theorem are actually
equivalent; that is, the Implicit Function Theorem can be proven from \scratch" then used to prove
the Inverse Function Theorem, or vice versa. We already have the Implicit Function Theorem, so
we might as well use it, not to mention that the \scratch" proof of the Inverse Function Theorem
is rather lengthy and uses the Contraction Mapping Theorem.

Proof. De�ne the function F : U � V � R2n ! Rn by F(x; y ) = y � f (x) so that F(x; y ) = 0 is
equivalent to y = f (x). We want to determine if we can solve forx locally in terms of y , so naturally
we will use the Implicit Function Theorem. But this immediately follows, since the invertibility
condition on Df (x) is precisely the requirement for the Implicit Function Theorem.

To derive Equation (3.2) we note that f � 1(f (x)) = x, so di�erentiating and applying the chain
rule yields

[D f � 1](f (x)) � D f (x) = I;

and the result then follows.

Example 3.10

Determine whether the function

f (x; y) = ( ex sin(y); ex cos(y))

is invertible in a neighbourhood of (0; 0). More generally, show that f is invertible in a
neighbourhood of any point.

Solution. Computing the derivative of f , we get

D f (x;y ) =
�

ex sin(y) ex cos(y)
ex cos(y) � ex sin(y)

�
:
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Evaluating at (0 ; 0) we get

D f (0;0) =
�

0 1
1 0

�

which is certainly invertible (in fact, it is its own inverse). More generally, we want to determine
whether D f (x;y ) is invertible, so we compute the determinant to be

det D f (x;y ) = � e2x sin2(y) � e2x cos2(y) = � e2x :

Since e2x is never zero,D f (x;y ) will be invertible for any choice of (x; y), so the Inverse Function
Theorem can be applied everywhere. �

3.2 Curves, Surfaces, and Manifolds

The Implicit Function Theorem is the key to determining the appropriate de�nition of what it
means for something to be smooth. Intuitively, an object is smooth if it contains no corners, such
as a sphere. On the other hand, something like a cube will not be smooth, as each vertex and
edge of the cube are sharp. It turns out that this is not the best of way of thinking about smooth:
For example, what happens when we are given a surface, such as thelemniscate (see Figure 26)?
When we draw the lemniscate, we can do it is a smooth fashion so that no sharp edges ever appear;
nonetheless there does seem to be something odd about what happens at the overlap point.

Figure 26: The sphere should be smooth, the cube should not be, but who knows about the
lemniscate?

The criteria that we will see will look mysterious in the absence of geometric intuition, but the
key to testing smoothness is to look at the tangent space. At each point on a curve, surface, or
higher dimensional object, there is the notion of a line, plane, or hyperplane which is tangent to
that point. Each of these tangent spaces just looks like a vector space, and thus has an associated
dimension. A space is smooth if its tangent space does not change dimension.

For example, we will see that every point on the sphere has a two dimensional tangent space.
For the cube, the interior of the faces will have two dimensional tangent spaces, while the edges
will have 1-dimensional tangent spaces, and the vertices will have a 0-dimensional tangent space.

There are several ways of actually de�ning these spaces, such as via the graph of a function,
through a parameterization, or as the zero locus of a function. In each of these cases, the dimensions
of the domain and codomain will play an important role. In this section, we take an introductory
look at the relationship between 1-dimensional curves, 2-dimensional surfaces, andn-dimensional
manifolds.
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3.2.1 Curves in R2

We have thus far seen three di�erent ways of de�ning one-dimensional objects. Here we pay
particular attention to the case of one-dimensional objects inR2. A curve can be written as

1. The graph of a function: Let f : R ! R, and de�ne the graph of f to be

�( f ) = f (x; f (x)) : x 2 Rg:

2. The zero locus of a function: LetF : R2 ! R, and let C = F � 1(0). This object will generally
be one-dimensional, asF (x; y) = 0 yields one equation with two-variables, meaning we can
(locally) solve one in terms of the other.

3. As the image of a parametric function: Let s : (a; b) ! R2 by given by t 7! (s1(t); s2(t)), and
de�ne the curve to be p((a; b)).

For example, the curve which is the graph off (x) = 3
p

x2, is the same as the zero locus of
F (x; y) = y3 � x2 and the parametric curve p(t) = ( t3; t2).

� 2 � 1 1 2

1

Figure 27: The curve de�ned by the graph of f (x) = 3
p

x2, the zero locus ofF (x; y) = y3 � x2 and
the parametric function p(t) = ( t3; t2).

Unfortunately, the set of all curves de�ned by one method need not be the same as those de�ned
by another.

Proposition 3.11

Every curve that can be expressed as the graph of a functionf : R ! R may also be written
as the zero locus of a functionF : R2 ! R and parametrically as the image ofp : R ! R2.

Proof. Fix some f : R ! R with graph �( f ) = f (x; f (x)) : x 2 Rg. De�ne the function F (x; y) =
y � f (x) and notice that

F � 1(0) = f (x; y) : F (x; y) = 0 g = f (x; y) : y = f (x)g = f (x; f (x)) : x 2 Rg = �( f ):
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In the parametric case, de�ne the parametric function p : R ! R2 by t 7! (t; f (t)). Once again we
have

p(R) = f (t; f (t)) : t 2 Rg = �( f );

as required.

The converse of this proposition is not true. For example, the circle is impossible to write
as the graph of a function, since it fails the vertical line test. However, the circle is the zero
locus of F (x; y) = x2 + y2 � 1, or the image of the function p : [0; 2� ) ! R2 given by p(t) =
(cos(t); sin(t)). Since graphs cannot describe even simple shapes like a circle, they are rarely used
to de�ne manifolds.

Now we are more interested in assessing the smoothness properties of a curveC. Our time
studying calculus has told us that if the function f : R ! R is C1 then its graph de�nes a curve
which is smooth. However, since not all curves of interest can be written as the graphs of functions,
this will fail to be a good de�nition. Instead, we will just require that the curve locally look like
the graph of a smooth function:

De�nition 3.12

A connectedsetC � R2 is said to be asmooth curveif every point a 2 C has a neighbourhood
N on which C \ N is the graph of a C1 function. If C is not connected, then we shall say
that C is smooth if each of its connected components is a smooth curve.

Unfortunately, if the curve is de�ned as a zero locus or parametrically, we will not be able to
\read o�" the smoothness of the curve just by looking at the de�ning function. To see what kind
of things can go wrong, consider the functionF (x; y) = y3 � x2 (Figure 27). This is certainly a C1

function (and is in fact in�nitely di�erentiable), but the zero locus it de�nes is the curve y3 = x2.
The student can easily check that this curve is not di�erentiable when x = 0, and so cannot be
written as the graph of a C1 function.

Thus the best we can hope to do is locally. Our work with the Implicit Function Theorem
tells us that r F 6= 0 on F � 1(0) will guarantee that our curve looks locally like the graph of a C1

function, but what is the condition we should impose on parametric de�nition? The following is a
�rst step in the right direction:

Theorem 3.13

1. Let F : R2 ! R be aC1 function and S = F � 1(0). If p 2 S and r F (p) 6= 0 then there
exists an open neighbourhoodN of p such that N \ S is the graph of a C1 function.

2. Let p : (a; b) ! R2 be a C1 function and let S = p(a; b). If t0 2 (a; b) satis�es p0(t) 6= 0
then there is an open subintervalI � (a; b) such that p(I ) is the graph of a C1-curve.

Proof. 1. This is immediate by the Implicit Function Theorem.

2. The image of p is p(a; b) = f (p1(t); p2(t)) : t 2 (a; b)g. Morally, we would like to \change
variables" by setting x = p1(t), inverting to write t = p� 1

1 (x) and substitute to write C as
C =

�
(x; p2(p� 1

1 (x)))
	

. However, there is no reason to suspect thatp1 should be invertible.
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The solution to this is e�ectively given by the Implicit Function Theorem, which in a sense
says that we can locally invert.

More rigorously, sincep0(t0) = ( p0
1(t0); p0

2(t0)) 6= 0 then one of the p0
i (t0) 6= 0. Without loss of

generality, assume thatp0
1(t0) 6= 0. De�ne the C1 function F (x; t ) = x � p1(t) with x0 = p1(t0)

so that F (x0; t0) = 0 and @t F (x0; t0) = � p0
1(t0) 6= 0. By the Implicit Function Theorem, we

may solve for t in terms of x; that is, there exists a C1-function g such that t = g(x) in a
neighbourhood of (x0; t0). Thus

p(t) = ( p1(t); p2(t)) = ( x; p2(g(x))) :

Sincep2 and g are both C1, so too is their compositionp2 � g, and this shows that the image
of p(t) is the graph of the C1-curve p2 � g as required.

Example 3.14

Determine whether the curve de�ned by the image of p : (0; 2� ) ! R2 given by t 7!
(t cos(t); t sin(t)) is smooth.

Solution. If we di�erentiate p0(t) = (cos( t) � t sin(t); sin(t) + t cos(t)) and it is not clear whether or
not this function is ever zero. Instead, let's try to rewrite this curve as the zero locus of a function
F : R2 ! R. Set x = t cos(t) and y = t sin(t) and notice that x2 + y2 = t2. We can isolate t by
recognizing that t = arctan( y=x), and so the curve as de�ned in the same thing as the zero locus
of the function F (x; y) = x2 + y2 � arctan2(y=x). It's gradient is given by

r F (x; y) =
�

2x +
2 arctan(y=x)

x2 + y2 ; 2y �
2x arctan(y=x)

x2 + y2

�
:

The only time that this can be zero is when (x; y) = (0 ; 0); however, the restriction of t 2 (0; 2� )
makes this impossible. �

An important point to note is that part (2) of the theorem indicates there is an open interval
I � (a; b) on which the function is the graph of a C1-curve, but this does not mean that there is an
open neighbourhood ofR2 on which this is a smooth curve. What could possibly go wrong? Well,
the map could fail to be injective:
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Example 3.15 Under De�nition 3.12 we know that the lemniscate cannot be a smooth
curve, since at the point of overlap there is no neighbourhood on which the function looks
like the graph of a smooth curve. In parametric equations, one has (Figure 28)

p : R ! R2; t 7!
1

1 + sin2 t
(cos(t); sin(t) cos(t)) : (3.3)

Notice that

p0(t) =
1

(1 + sin 2(t))2

�
� sin(t)[2 + cos2(t)]; cos(2t)[1 + sin 2(t)] � sin(t) cos(t) sin(2t)

�
:

This is never zero, since the �rst argument is only zero at t = n� whereas the second
argument is identically 1 at n� . But the function is certainly not injective since it is periodic.
In fact, even restricting our attention to (0 ; 2� ) we see thatp(�= 2) = p(3�= 2) = (0 ; 0). Thus
there is no neighbourhood of (0; 0) where p(0; 2� ) looks like the graph of a C1 function.
Even worse, there are two di�erent values of the derivative at (0; 0) depending on whether
we take t = �= 2 or 3�= 2.

p0(�= 2) = 1
2 (� 1; 1) ; p0(3�= 2) = 1

2(1; � 1):

� 1 � 0:5 0:5 1

� 0:4

0:4

Figure 28: The lemniscate drawn with the parametric equation given by (3.3). The thick blue line
is the set p(( � =4; 3� =4)), which is the graph of a C1-function. However, the whole curve fails to be
smooth.

So what exactly did Theorem 3.13 tell us? It told us that sincep0(�= 2) 6= 0 there is a neigh-
bourhood around �= 2 whose image looked like the graph of aC1-function. However, this did not
take into consideration the more global nature of the curve. The way to remedy this situation is
as follows:
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De�nition 3.16

If I � R is an interval, a C1 map  : I ! R2 is said to be

1. A regular curve if  0(t) 6= 0 for all t 2 I ,

2. A simple curve if  is injective on the interior of I .

Hence if  is a regular, Theorem 3.13 implies that there is a neighbourhood of each point whose
image looks like the graph of aC1-function. Simplicity guarantees that no funny overlaps can
happen, and this is what is needed for the curve to be smooth.

Example 3.17

Determine whether the curve de�ned by the parametric equation p : R ! R2 given by
t 7! (t3; e2t ) is a smooth.

Solution. Di�erentiating, we get p0(t) = (3 t2; 2e2t ) and since the second component is never zero,p
is certainly regular. On the other hand, both component functionst3 and e2t are injective, implying
that p is also injective, sop is simple. We conclude that the image ofp is smooth. �

Summary: There are three ways to de�ne curves: as the graph of a functionR ! R, as the
zero locus of a functionR2 ! R, or as the image of a parameterizationR ! R2. Smoothness is
determined as follows:

1. If C = �( f ) = f (x; f (x)) : x 2 [a; b]g is the graph of a C1 function, then C is smooth.

2. If C = F � 1(0) is the zero locus ofF : R2 ! R, then C is smooth if r F 6= 0 for every point
in C.

3. If C = p(a; b) where p : R ! R2 is the image of a parameterization, thenC is smooth only if
p is regular (p0(t) 6= 0) and simple (p is injective).

Curves in Rn : Generalizing our discussion so far, a curve inRn may be described in one of three
ways:

1. The graph of a function f : R ! Rn � 1,

2. The zero locus of a functionF : Rn ! Rn � 1,

3. The image of a functionp : R ! Rn .

Again, we de�ne C � Rn to be a smooth curve if it is connected and locally the graph of a
C1 function. If C = F � 1(0) then the linear independence offr Fi g guarantees that C is a smooth
curve. The notions of regular and simple curves generalize in an obvious way toRn and so the
image of a regular, simple,C1-map R ! Rn is also a smooth curve.
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Dimension of the Tangent Space: It was mentioned previously that the idea is to examine
the dimension of the tangent space, and see whether or not it changes as we move along our curve.
Notice that when p : R ! Rn that p0(t0) is a vector which is tangent to the curve. Hence so long
as p0(t0) 6= 0, the tangent space is always one dimensional. Conversely, if the curve is given by the
zero locus ofF : Rn ! Rn � 1 then there are (n � 1)-vectors fr Fi g. If these are linearly dependent,
they de�ne an (n � 1)-hyper plane in Rn . The perpendicular to this hyperplane is the tangent
space, which will again be one dimensional.

3.2.2 Surfaces in R3

We have looked at 1-dimensional spaces ofR2 and how to generalize them toRn . Now we increase
the dimension of the space itself. The simplest case will be to look at 2-dimensional spaces (surfaces)
or R3, afterwhich we will have a su�cient idea of the general procedure to be able to discussk-
dimensional spaces ofRn .

Much akin to our treatment of curves, there are three ways to discuss surfaces:

1. The graph of a function f : R2 ! R,

2. The zero-locus of a functionF : R3 ! R,

3. The image of a functionp : R2 ! R3.

Naturally, given the graph of a function f : R2 ! R we may write it as the zero-locus of
F (x; y; z) = z � f (x; y), or parametrically as (s; t) 7! (s; t; f (s; t)).

Example 3.18 Fix r; R > 0 and consider the parameterizationg : [0; 2� ) � [0; 2� ) ! R3

given by
g(�; � ) = [( R + r cos(� )) cos(� ); (R + r cos(� )) sin( � ); r sin(� )]

or equivalently, the zero locus of the function

F (x; y; z) = ( x2 + y2 + z2 + R2 � r 2)2 � 4R2(x2 + y2):

These de�ne a torus, wherer is the radius of the sweeping circle, andR is the radius to the
center of that circle

De�nition 3.19

A smooth surface ofR3 is a connected subsetS � R3 such that, for every p 2 S there exists
a neighbourhoodN of p such that S \ N is the graph of a C1 function f : R2 ! R.

The Implicit Function Theorem again tells us that F � 1(0) will be a smooth surface so long as
r F (x) 6= 0 for all x 2 F � 1(0), but the case of the parametric de�nition is slightly more subtle.
Consider a linear parametric function

f (s; t) = us + v t + w:
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x

y

r

R

Figure 29: A slice of the torus.

If u and v are linearly dependent, the image ofp will be a line, while if they are linearly independent
the image will de�ne a plane. Since we are only interested in bona-�de surfaces, we need to preclude
the possibility of a line. When p(s; t) is not just a linear function, the usual generalization tells
us that we need to tangent-vectors to be linearly independent; that is,@p

@s and @p
@t must be linearly

independent. This can equivalently be phrased as saying that the matrix

�
@p
@s

@p
@t

�

must be full-rank.

Theorem 3.20

1. Let F : R3 ! R be aC1 function and S = F � 1(0). If p 2 S and r F (p) 6= 0 then there
exists an open neighbourhoodN of p such that N \ S is the graph of a C1-curve.

2. Let p : U � R2 ! R3 be a C1 function and let S = p(U). If the point ( s0; t0) 2 U
causes the matrix �

@p
@s

(s0; t0)
@p
@t

(s0; t0)

�

to have full rank, then there is an open subsetV � U of (s0; t0) such that p(V ) \ S is
the graph of a C1-curve.

The proof of this theorem is almost identical to that of Theorem 3.13 and is left as an exercise for
the student. It should be evident that a connected level set of aC1 map F : R3 ! R with nowhere
vanishing gradient de�nes a smooth surface. For the parametric de�nition, we once again require
both regularity of the surface (linearly independent tangents) and simplicity (global injectivity).
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Example 3.21

Consider the surface de�ned by the function

p(s; t) = ( scos(t); ssin(t); s2):

Find a zero-locus description of the surface, and �nd (using both the parametric and zero
locus pictures) the points where the surface is singular.

Solution. Setting x = scos(t); y = ssin(t), and z = s2, notice that

x2 + y2 = s2(cos2(t) + sin 2(t)) = s2 = z;

so that the corresponding zero-locus is given byF (x; y; z) = z � x2 � y2. Our intuition tells us
that this is a paraboloid and so should not admit any singularities. Di�erentiating the parametric
de�nition, we have

@p
@s

= (cos(t); sin(t); 2s);
@p
@t

= ( � ssin(t); scos(t); 0):

Now we could examine the rank of the matrix whose columns are made from the above matrices,
but in the case of surfaces inR3 it is easier to check linear-independence by computing the cross
product. We �nd that

@p
@s

�
@p
@t

= ( � 2s2 cos(t); � 2s2 sin(t); s):

The only place where this could be zero is ats = 0 which corresponds to the origin (0; 0), but
remember that this is not necessary for a singularity. Let's take a look at the zero-locus de�nition.
The gradient of F (x; y; z) is given by

r F (x; y; z) = ( � 2x; � 2y; 1)

and this is certainly never zero. This implies that the surface does not have any singularities. �

Surfaces in General: More generally, a surface inRn may be de�ned by the zero locus of a
function F : Rn ! Rn � 2, or the image of a parametric function p : R2 ! Rn . To see what the
general conditions for smoothness should be, we again think about the tangent space. For the zero
locus picture, there are (n � 2) elements in the setfr Fi g. If they are linearly independent, then
they span an (n � 2)-dimensional hyperplane ofRn , whose orthogonal complement is the tangent
space of the surface. In the parametric picture,@1p and @2p form a basis for the tangent space, so
for this to be two dimensional, we require that they are everywhere linearly independent.

3.2.3 Dimension k-manifolds in Rn

We now discuss (one last time!) how to formk-dimensional subspaces ofRn . There are two methods
we will consider:

1. The zero-locus of a functionF : Rn ! Rn � k ,
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2. The image of a functionp : Rk ! Rn .

If our space isM = F � 1(0), the conditions which guarantee that the de�ned object is a smooth
k-manifold is that

rank DF(x) = n � k; 8x 2 F � 1(0):

While if M = p(U � Rk ) then we must have p(t ) is injective on U and

rank
�

@1p(t ) � � � @kp(t )
�

= k; 8t 2 U:

In fact, rather than remembering which dimension corresponds to which, it is su�cient to state
that either DF(x) or Dp(t ) must have maximal rank at every point on the surface. Rather than
rehash our tangent space argument in this case, the student should try to convince his/herself that
rank DF(x0) is the rank of the normal plane at x0, while rank [@i p(t 0)] is the rank of the tangent
plane at t 0.
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4 Integration

Having e�ectively completed our study of di�erential calculus, we now move on to integral calculus.
Students often �nd integral calculus more di�cult than di�erential calculus, typically because
computations are not nearly as straightforward as the \recipe book" style o�ered by di�erentiation.
Nonetheless, it turns out that integration is actually a far more sound theory: it is easier to make
rigorous in general contexts.

We will begin with a \review" of integration on the line (I say \review" because it will almost
certainly be new material), before moving onto the general theory for integrating variables in several
dimensions.

4.1 Integration on R

Given a su�ciently nice function f : R ! R, the idea of integration on the interval [a; b] is to
estimate the signed5 area between the graph of the function and thex-axis. The heuristic idea of
how to proceed is to divide [a; b] into subintervals and approximate the height of the function by
rectangles. We then take a limit as the length of the subintervals goes to zero, and if we get a
well-de�ned number, we call that the integral.

Unfortunately, there is no canonical choice for either how to divide [a; b], nor for how high to
make the rectangles. Typical choices for height often include left/right endpoints, or inf/sup values
of the function on each subinterval, but of course these are not the only choices.

Aside: It turns out that Riemann integration, or integrating by partitions of the domain, is an
inferior choice as there are many functions which are not integrable. A much more prudent choice
is to actually break up the range of the function and integrate that way, in a manner known as
Lebesgue integration. Unfortunately, Lebesgue integration is beyond the scope of the course.

4.1.1 Riemann Sums

For the remainder of this section, we �x an interval [a; b] � R.

De�nition 4.1

A �nite partition P of [a; b] is an ordered collection of points P =
f a = x0 < x 1 < x 2 < � � � < x n = bg. De�ne the order of P to be jP j = n and the
length of P to be

`(P) = max
i =1 ;:::; jP j

[x i � x i � 1] ;

that is, the length of P is the length of the longest interval whose endpoints are inP.

One should think of partitions as a way of dividing the interval [a; b] into subintervals. For
example, on [0; 1] we think of the partition P =

�
0 < 1

3 < 2
3 < 1

	
as breaking [0; 1] into [0; 1=3] [

[1=3; 2=3] [ [2=3; 1]. If P[a;b] is the set of all �nite partitions of [ a; b] then ` : P[a;b] ! R+ gives us
a \worst-case scenario" for the length of the subintervals, in much the same way as the sup-norm.

5Signed area simply means that area above thex-axis will be positive, while area below the x-axis will be negative

c 2015 Tyler Holden

103



4 Integration 4.1 Integration on R

The idea is that when we do integration, we are going to want to take partitions whose length
between endpoints gets smaller, corresponding to letting the width of our approximating rectangles
get smaller. The number `(P) then describes the widest width, which in a sense is our \worst"
rectangle.

De�nition 4.2

If P and Q are two partitions of [a; b], then Q is a re�nement of P if P � Q.

Example 4.3 Consider the interval [0; 1] and the partitions

P =
�

0 < 1
2 < 1

	
; Q =

�
0 < 1

3 < 2
3 < 1

	
; R =

�
0 < 1

4 < 1
3 < 1

2 < 2
3 < 3

4 < 1
	

:

Note that P and Q cannot be compared, since one is not a subset of the other. However,
P � R and Q � R, so R is a common re�nement of both P and Q.

It is not too hard to see that any two sets in P[a;b] admit a common re�nement: Given two
partitions P; Q 2 P [a;b], de�ne R = P [ Q so that P � R and Q � R.

De�nition 4.4

Given a function f : [a; b] ! R, a Riemann sum of f with respect to the partition P =
f x0 < x 1 < � � � < x n � 1 < x ng is any sum of the form

S(f; P ) =
nX

i =1

f (t i )(x i � x i � 1); t i 2 [x i � 1; x i ]:

Note that while the Riemann sum S(f; P ) certainly depends on how we choose the sampling
t i , we will often choose to ignore this fact. Some typical choices of Riemann sum that the student
has likely seen amount to particular choices of thet i . In the �rst case, we have the left- and right-
endpoint Riemann sums

L(f; P ) =
nX

i =1

f (x i � 1)(x i � x i � 1); R(f; P ) =
nX

i =1

f (x i )(x i � x i � 1):

Of far greater use are the lower and upper Riemann sums, de�ned as follows. Fix a partition
P 2 P [a;b] and f : [a; b] ! R. De�ne

mi = inf
x2 [x i � 1 ;x i ]

f (x); M i = sup
x2 [x i � 1 ;x i ]

f (x);

so that mi is the \smallest" value that f takes on [x i � 1; x i ] while M i is the largest. Now set

U(f; P ) =
nX

i =1

M i (x i � x i � 1); u(f; P ) =
NX

i =1

mi (x i � x i � 1):

The idea of the integral is that regardless of what partition we choose or how we choose to
sample the partition, we should always arrive at the same answer. This leads us to the formal
de�nition of Riemann integrability.
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De�nition 4.5

We say that a function f : [a; b] ! R is Riemann integrable on [a; b] with integral I if for
every � > 0 there exists a� > 0 such that wheneverP 2 P [a;b] satis�es `(P) < � then

jS(f; P ) � I j < �:

The element I is often denotedI =
Rb

a f (x) dx.

We know that the student abhors the idea of � -� proofs, so it would not surprise us if headaches
are currently abound. Let's take a moment and read into what the de�nition of integrability really
means: Roughly speaking, a function is Riemann integrable with integralI if we can approximate
I arbitrarily well by taking a su�ciently �ne partition P.

There are many di�erent ways of de�ning Riemann integrability depending on how one chooses
to set up the problem. We give here a statement of some equivalent de�nitions:

Theorem 4.6

If f : [a; b] ! R is a function, then the following are equivalent:

1. f is Riemann integrable,

2. sup
P 2P [a;b ]

u(f; P ) = inf
P 2P [a;b ]

U(f; P ),

3. For every � > 0 there exists a partition P 2 P [a;b] such that U(f; P ) � u(f; P ) < � ,

4. For every � > 0 there exists a� > 0 such wheneverP; Q 2 P [a;b] satisfy `(P) < � and
`(Q) < � then jS(f; P ) � S(f; Q )j < � .

Students coming from Math 137 will recognize de�nition (2) as the statement that the lower
and upper integrals are equal. Indeed, the supremum over the lower Riemann sums is the lower
integral, and vice-versa for the upper integrals.

Each of these de�nitions o�ers its own advantage. For example, (1) and (2) are useful for the-
oretical reasons but are highly intractable for determining which functions are actually integrable.
On the other hand, (3) and (4) are exceptionally useful as they do not require one to actually know
the integral. In particular, (3) is useful because the upper and lower Riemann sums are nicely
behaved, while (4) is useful because it o�ers the exibility to choose samplings.

Example 4.7

Show that the function f (x) = cx is integrable on [a; b].

Solution. If c = 0 then there is nothing to do. Let us use de�nition (3) to proceed, and assume
without loss of generality that c > 0. The advantage of using de�nition (3) is that we get to
choose the partition, which gives us a great deal of power. Letn be any positive integer such that
c(b� a)2

n < � (more on how to choose this later). Since our function is increasing, minima will occur
at left endpoints, and maxima will occur at right endpoints. Choose a uniform partition of [a; b]
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into n + 1-subintervals P = f a = x0; x1; : : : ; xn = bg, where x i = a + b� a
n i , so that

u(f; P ) =
n � 1X

k=0

f (xk )(xk+1 � xk ) =
c(b� a)

n

n � 1X

k=0

xk

U(f; P ) =
n � 1X

k=0

f (xk+1 )(xk+1 � xk ) =
c(b� a)

n

n � 1X

k=0

xk+1 :

Hence their di�erence yields

U(f; P ) � u(f; P ) =
c(b� a)

n

n � 1X

k=0

(xk+1 � xk )

=
c(b� a)

n
(b� a)

< �:

which is what we wanted to show. �

x1 x2 x3 x4 x5

ca

cb

f (x) = cx
U(f; P )

u(f; P )

Figure 30: One can visually see why the di�erence betweenU(f; P ) and u(f; P ) results in a tele-
scoping sum. For example, the red rectangle on [x1; x2] is the same area as the blue rectangle on
[x2; x3], so they cancel in the di�erence.

Example 4.8

Show that the characteristic function of the rationals on [0; 1]:

� Q(x) =

(
1 x 2 Q \ [0; 1]

0 otherwise

is not Riemann integrable.
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Solution. Let P = f 0 = x0 < x 1 < � � � < x n = 1g be an arbitrary partition of Q \ [0; 1], and recall
that Q is dense in [0; 1] while the irrationals R n Q are dense in [0; 1]. Hence on each subinterval
[x i � 1; x i ] we have

M i = sup
x2 [x i � 1 ;x i ]

� Q(x) = 1 ; mi = inf
x2 [x i � 1 ;x i ]

� Q(x) = 0

so in particular

U(f; P ) =
nX

i =1

M i (x i � x i � 1) =
nX

i =1

(x i � x i � 1)

= x1 � x0 = 1

u(f; P ) =
nX

i =1

mi (x i � x i � 1) = 0

so that U(f; P ) � u(f; P ) = 1. Since this holds for arbitrary partitions, any � < 1 will fail the
de�nition of integrability, so � Q is not integrable. �
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4.1.2 Properties of the Integral

Theorem 4.9

1. Additivity of Domain: If f is integrable on [a; b] and [b; c] then f is integrable on
[a; c] and Z c

a
f (x) dx =

Z b

a
f (x) dx +

Z c

b
f (x) dx:

2. Additivity of Integral: If f; g are integral on [a; b] then f + g is integrable on [a; b]
and Z b

a
[f (x) + g(x)] dx =

Z b

a
f (x) dx +

Z b

a
g(x) dx:

3. Scalar Multiplication: If f is integrable on [a; b] and c 2 R, then cf is integrable on
[a; b] and Z b

a
cf (x) dx = c

Z b

a
f (x) dx:

4. Inherited Integrability: If f is integrable on [a; b] then f is integrable on any subin-
terval [c; d] � [a; b].

5. Monotonicity of Integral: If f; g are integrable on [a; b] and f (x) � g(x) for all
x 2 [a; b] then Z b

a
f (x) dx �

Z b

a
g(x) dx:

6. Subnormality: If f is integrable on [a; b] then jf j is integrable on [a; b] and satis�es

�
�
�
�

Z b

a
f (x) dx

�
�
�
� �

Z b

a
jf (x)j dx:

These proofs are standard and fairly fundamental results. We will not go into them at this
time, but encourage the student to give them a try.

Of course, we also have the following important theorem which guarantees that integral calculus
is actually computable:

Theorem 4.10: The Fundamental Theorem of Calculus

1. If f is integrable on [a; b] and x 2 [a; b] de�ne F (x) =
Rx

a f (t)dt. The function F is
continuous on [a; b] and moreover, F 0(x) exists and equalsf (x) at every point x at
which f is continuous.

2. Let F be a continuous function on [a; b] that is di�erentiable except possibly at �nitely
many points in [a; b], and take f = F 0 at all such points. If f is integrable on [a; b],
then

Rb
a f (x) dx = F (b) � F (a).
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The fundamental theorem say that, up to functions being \almost the same" and additive
constants, the processes of integration and di�erentiation are mutually inverting. The proof is a
standard exercise and so we omit it.

4.1.3 Su�cient Conditions for Integrability

Theorem 4.6 gave multiple equivalent de�nitions for integrability, each with its own strengths
depending on context. Of great use was parts (3) and (4) which gave conditions on integrability
without needing to know the limiting integral. Unfortunately, these criteria fail to really expound
upon which of our everyday functions are integrable.

There are a great deal of functions, absent of any regularity conditions such as continuity or
di�erentiability, which prove to be integrable. Example 4.8 shows that there are also functions
which fail to integrable. We will develop several su�cient conditions for integrability, one which
looks similar to \Bolzano-Weierstrauss" and one which amounts to being \almost continuous,"
which is certainly the case with most functions we have seen and will see.

Theorem 4.11

If f is bounded and monotone on [a; b] then f is integrable.

Proof. The idea of the proof is the upper and lower Riemann sums are very easy to write down
for monotone functions, and the fact that f is additionally bounded means that we can make
the di�erence between the upper and lower Riemann sums arbitrarily small (which is one of our
integrability conditions). In fact, the proof is e�ectively identical to the one given in Example 4.7
(see Figure 30).

More formally, assume without loss of generality thatf is increasing on [a; b] (just replace f with
� f if it is decreasing and apply Theorem 4.9 (3)). For any partition P = f a = x0 < x 1 < � � � < x n = bg
we then have that the lower and upper Riemann sums are determined by the left- and right-
endpoints on each interval:

u(f; P ) =
nX

i =1

f (x i � 1)(x i � x i � 1); U(f; P ) =
nX

i =1

f (x i )(x i � x i � 1):

Let � > 0 be given and choose� < � [f (b) � f (a)] � 1. Let P be any partition of [a; b] such that
`(P) < � , so that

U(f; P ) � u(f; P ) =
nX

i =1

[f (x i ) � f (x i � 1)] (x i � x i � 1)

� �
nX

i =1

[f (x i ) � f (x i � 1)]

� � (f (b) � f (a))

�
�

f (b) � f (a)
(f (b) � f (a)) < �:
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Since� was arbitrary, Theorem 4.6 part (3) implies that f is integrable.

Note: We could have used uniform partitions here, which would have removed the need to take
� < � [f (b) � f (a)] � 1. Try repeating the proof using uniform partitions to test whether you actually
understand the proof.

Theorem 4.12

Every continuous function on [a; b] is integrable.

It is tempting to use Theorem 4.11, sincef is certainly bounded and we should be able to
restrict f to intervals on which it is monotone. Applying Theorem 4.9 part (1) we would then be
done. However, this does not work, since it can be shown that there are continuous functions on
[a; b] which are not monotone on any interval! (Think about the function sin(1=x) and consider
yourself this is not monotone in any interval around 0. Such functions are similar.) Luckily, we can
actually just prove the theorem directly:

Proof. The idea of the theorem is as follows: Continuous function on compact sets are necessarily
uniformly continuous: in e�ect, this means that we can control how quickly our function grows by
choosing neighbourhoods of identical but su�ciently small size. By choosing a partition to have
length smaller than these neighbourhoods, we can thus control the distance between the maximum
and minimum of a function on each subinterval, and force the upper and lower Riemann sums to
converge.

More formally: Let � > 0 be given. Since any continuous function on a compact set is uniformly
continuous, we can �nd a � > 0 such that wheneverjx � yj < � then jf (x) � f (y)j < �

b� a . Now let
P = f x0 < � � � < x ng be a partition such that `(P) < � . The restriction of f to each subinterval
[x i � 1; x i ] is still continuous, and so by the Extreme Value Theorem,f must attain its maximum
and minimum on [x i � 1; x i ]. Let � M correspond to the max and� m correspond to the min so that
M i = f (� M ) and mi = f (� m ). Since � M ; � m 2 [x i � 1; x i ] we havej� M � � m j � j x i � x i � 1j < � so that

M i � mi = jM i � mi j = jf (� M ) � f (� m )j <
�

b� a
:

Hence the di�erence in Riemann sums becomes

U(f; P ) � u(f; P ) =
nX

i =1

(M i � mi )(x i � x i � 1) �
nX

i =1

�
�

b� a

�
(x i � x i � 1)

�
�

b� a

nX

i =1

(x i � x i � 1) =
�

b� a
(b� a) = �:

Applying Theorem 4.6 part (3), this shows that f is integrable.

With any luck, your previous courses have taught you that integration over a single point yields
an integral of 0, regardless of the function. In essence, this occurs because a single point has no
\width," and so any Riemann sum over it is zero. We should be able to readily extend this to any
�nite number of points, so that an integral over a �nite set is still zero, but what happens when
we want to talk in�nitely many points? What does it mean to have zero width in this case?
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x i � 1 x i

jx i � x i � 1j < �

jM i � mi j <
�

b� a

� M � m

Figure 31: Since our function is uniformly continuous, wheneverjx � yj < � then jf (x) � f (y)j < �
b� a .

By choosing a partition for which the maximal length of a subinterval is less than� , we can ensure
that the di�erence between the upper and lower integrals on each region is bounded.

De�nition 4.13

If I = [ a; b] let the length of I be `(I ) = b� a: If P(R) is the power-set ofR, we de�ne the
Jordan outer measurea as the function m : P(R) ! R� 0 given by

m(S) = inf

8
><

>:

nX

k=1

`(I k ) :

I k is an interval

S �
n[

k=1

I k

9
>=

>;
:

If m(S) exists and m(@S) = 0, we say that S is Jordan measurable. If m(S) = 0 we say that
S has Jordan measure zero.

aThere is a much more useful notion called the Lebesgue measure, which is essentially the same as the
Jordan measure except that we no longer consider a �nite covering by intervals, and instead take a countable
collection of intervals.

Most well behaved sets that we can think of are Jordan measurable. An example of a set which
is not Jordan measurable isQ \ [0; 1]. Notice that m(@(Q \ [0; 1])) = m([0; 1]) = 1, so that its
boundary does not have zero measure.

Example 4.14

Let S be a set containing a single point. Show thatS has zero Jordan measure.

Solution. Let S = f xg so that the point has a name. It su�ces to show that for every � > 0,
m(S) < � (why?). Notice that I =

�
x � �

2 ; x + �
2

�
covers S, and `(I ) = � . Since m(S) is the

in�mum over all such covers, we havem(S) < ` (I ) = � as required. �

Exercise: Show that the measure of any �nite set is also 0.

Since integration does not seem to recognize individual points, we suspect that changing a
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function at a �nite collection of points should not a�ect the integral.

Example 4.15 Let f (x) = x on [0; 2] and de�ne

g(x) =

(
f (x) x 6= 1

106 x = 1
:

It seems likely that f and g have the same integral on [0; 2]. In order to show that this is
true, we apply a tried-and-tested analysis technique, which essentially involves ignoring the
point which is di�erent and taking a limit. More rigorously, for su�ciently small � > 0, let
U� = (1 � �; 1 + � ). On V� = [0 ; 2] n U� = [0 ; 1 � � ] [ [1 + �; 2] we have that f (x) = g(x), and
these are integrable since they are continuous onV� . Furthermore, by Theorem 4.9 we have

Z 2

0
g(x) dx =

Z

V�

g(x) dx +
Z

U�

g(x) dx

=
Z

V�

f (x) dx +
Z

U�

g(x) dx:

We want to show that in the limit � ! 0 we get
R

U�
g(x) dx ! 0, so that

R2
0 f (x) dx =

R2
0 g(x) dx. While the approximation is rather terrible, notice that g(x) � 0 for all x 2 U�

and
max
x2 U�

g(x) = 10 6;

so that 0 �
R

U�
g(x) dx � 2� 106. By the Squeeze Theorem, it then follows that

Z

U�

g(x) dx � ! 0��! 0:

N

Theorem 4.16

If S � [a; b] is a Jordan measure zero set, andf : [a; b] ! R is bounded and continuous
everywhere except possibly atS, then f is integrable.

Proof. Let M and m be the supremum and in�mum of f on [a; b] and let � > 0 be given. SinceS has
Jordan measure zero, we can �nd a �nite collection of intervals (I j )k

j =1 such that S � [ j I j � [a; b]
and

P
j `(I j ) < �

2(M � m) . Set W = [ j I j and V = [ a; b] n W . Since f is continuous on V , it is
integrable on V and hence there exists some partitionP such that U(f jV ; P) � u(f jV ; P) < �

2 . If
necessary, re�neP so that it contains the endpoints of the intervals I j . Writing the upper and
lower Riemann sums over [a; b] we get

U(f; P ) = U(f jW ; P) + U(f jV ; P); u(f; P ) = u(f jW ; P) + u(f jV ; P):

Since we already know how to bound theV contribution, we need now only look at the W contri-
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bution. Notice on W we have

U(f jW ; P) � u(f jW ; P) <
kX

j =1

(M � m)`(I j ) � (M � m)
�

2(M � m)
=

�
2

;

thus

U(f; P ) � u(f; P ) = [ U(f jW ; P) � u(f jW ; P)] + [ U(f jV ; P) � u(f jV ; P)]

�
�
2

+
�
2

= �:

x

y

m

M

I 1 I 2

Figure 32: The setW = I 1 [ I 2 contains the discontinuities of our function. Since our function is
continuous away from W , we can make the di�erence between the upper and lower sums as small
as we want, hence we need only bound the function onW . The di�erence in height will always be
at worst M � m, but we can make the length of the intervalsI 1 and I 2 as small as we want, making
the W contribution arbitrarily small.

Corollary 4.17

If f; g are integrable on [a; b] and f = g up to a set of Jordan measure zero, then
Rb

a f (x) dx =
Rb

a g(x) dx:

This is an easy corollary, whose proof e�ectively emulates that of Remark 4.15, so we leave it
as an exercise for the student.

4.2 Integration in Rn

The process of integration for Rn is e�ectively identical to that of R, except now we must use
rectangles instead of intervals, rectangles being a possible analog for higher-dimensional intervals.
We start by focusing on R2 to gain a familiarity with the concepts before moving to generalRn .

Note: It could be argued that the generalization of a closed interval [a; b] is a closed ball. One
can develop the following theory with balls, but taking the area/volume of balls usually involves a
nasty factor of � hanging around. We want to avoid this, so let us just use rectangles.
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4.2.1 Integration in the Plane

cp By realizing (non-canonically) R2 = R� R, we can de�ne arectangleR in R2 as any set which can
be written as R = [ a; b] � [c; d]: this truly looks like a rectangle if drawn in the plane. A partition
of R may then be given by a partition of [a; b] and [c; d]; namely, if Px = f a = x0 < � � � < x n = bg
and Py = f c = y0 < � � � < y m = dg are partitions of their respective intervals, then P = Px � Py is
a partition of R, with subrectangles

Rij = [ x i � 1; x i ] � [yj � 1; yj ]; i =1 ;:::;n
j =1 ;:::;m :

x0
y0 x1

y1

x2

y2

x3

y3

x4

R32

It should be intuitively clear that the area of Rij will be given by A(Rij ) = ( x i � x i � 1)(yj � yj � 1),
in which case aRiemann sum for f : R2 ! R over the partition P is given by

S(f; P ) =
X

i =1 ;:::;n
j =1 ;:::;m

f (t ij )A(Rij ); t ij 2 Rij :

The notion of left- and right-Riemann sums no longer make sense, but certainly the upper and
lower Riemann sums are still well-de�ned:

U(f; P ) =
X

i =1 ;:::;n
j =1 ;:::;m

"

sup
x 2 R ij

f (x)

#

A(Rij ); u(f; P ) =
X

i =1 ;:::;n
j =1 ;:::;m

�
inf

x 2 R ij
f (x)

�
A(Rij ):

The usual de�nitions of Riemann integrability then carry over directly from De�nition 4.5.
Restricting ourselves to just one de�nition for the moment, we will then say that f : R ! R is
Riemann integrable if for any � > 0 we can �nd a partition P such that U(f; P ) � u(f; P ) < � , and
we will write the integral as

ZZ

R
f dA; or

ZZ
f (x; y) dx dy:

The usual theorems of integration apply:
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Theorem 4.18

1. Linearity of the Integral: If f 1; f 2 are integrable onR and c1; c2 2 R then c1f 1+ c2f 2

is integrable on S and
ZZ

R
[c1f 1 + c2f 2] dA = c1

ZZ

R
f 1 dA + c2

ZZ

R
f 2 dA:

2. Additivity of Domain: If f is integrable on disjoint rectanglesR1 and R2 then f is
integrable on R1 [ R2 and

ZZ

R1 [ R2

f dA =
ZZ

R1

f dA +
ZZ

R2

f dA:

3. Monotonicity: If f 1 � f 2 are integrable functions onR then
ZZ

R
f 1 dA �

ZZ

R
f 2 dA:

4. Subnormality: If f is integrable on R and jf j is integrable on R and
�
�RR

f dA
�
� �RR

jf j dA:

5. If f is continuous, then f is integrable.

Up to zero measure: As before, we will only be interested in functions up to sets of zero
measure. The notion of zero measurable sets immediately generalizes from the 1-dimensional case
as follows:

De�nition 4.19

The Jordan outer measureof a set S 2 R2 is de�ned to be

m(S) = inf

8
<

:

X

i;j

A(Rij ) :
Rij is a rectangle

S �
[

ij

Rij

9
=

;
:

If m(S) is de�ned, and m(@S) = 0 we say that S is Jordan measurable. Additionally, if S is
Jordan measurable andm(S) = 0, we say S has Jordan measure zero.

For any reasonably nice set, one can think of the Jordan measure as the area. For example, if
B 2 =

�
(x; y) 2 R2 : x2 + y2 � 1

	
is the unit disk, then m(B 2) = � (though this is extremely tough

to show by hand!). Intuitively, zero-measure sets ofR2 are those which do not have any area, and
one would suspect that \one-dimensional" objects should have no area.

Example 4.20

Show that the set S = [0 ; 1] � f 0g � R2 has zero Jordan measure.
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Solution. Fix a positive integer k 2 Z+ and consider thek squaresRi de�ned as

Ri =
�

i
k

;
i + 1

k

�
�

�
�

1
2k

;
1
2k

�
; i = 0 ; : : : ; k � 1

each of which has an area of1k2 . The student can check that S � [ k � 1
i =0 Ri so that f Ri g cover S.

Moreover, there are exactlyk such squares, so their total area isk � 1
k2 = 1

k . Since the Jordan
measure is the in�mum over all possible measures, we have that� (S) � 1

k . Since we chosek
arbitrarily, we can make � (S) as small as we want, showing that� (S) = 0. �

R0 R1 R2

1
k

1
k(0; 0) (1; 0)

This likely seemed like an unnecessarily di�cult way of doing the problem: certainly we could
have just placed an rectangle of length 1 and height1k around the interval and let k shrink to zero.
The important point here is that as we let k grow, the number of rectangles increased proportional
to k, while the area decreased proportional tok2.

Theorem 4.21

If f : R ! R2 is of classC1, then for every interval I � R we have that f (I ) has zero content.

Proof. As mentioned before, the idea of the proof is that the image ofR under a C1 function has
no width, but how do we show this? By thinking of f (t) = ( f 1(t); f 2(t)) as a curve, its derivatives
f 0(t) = ( f 0

1(t); f 0
2(t)) represent the velocity of the curve. If we take the maximum horizontal speed

C = max f 0
1(t), then by restricting to an interval [ a; b], we see that the maximum horizontal distance

that the function can travel is bounded above by C � (b � a); that is, distance = speed � time.
Proceeding similarly with the vertical direction means that we can put f ([a; b]) into a box whose
area is proportional to C(b � a)2, and since we have control over how to partition our curve, we
can always force this number as small as we want.

More formally, let I be a �xed interval and � > 0 be given. Sincef is of classC1, we know that
jf 0(t)j is continuous and hence attains its max and min onI . Let S = max t2 I jf 0(t)j and choose an
integer k such that k > ` (I )2S2

� . Let P be a uniform partition of I into k sub-intervals and notice
then that

`(P) =
`(I )

k
<

1
S

r
�
k

:

Fix a sub-interval [x i ; x i +1 ] and apply the Mean Value Theorem to the component functions
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f 1(t) and f 2(t) on this interval to �nd t i 2 [x i ; x i +1 ] satisfying

jf 1(x i ) � f 1(x i � 1)j � j f 0
1(t i )jjx i � x i � 1j � Sjx i � x i � 1j � S

1
S

r
�
k

=

r
�
k

;

and similarly jf 2(x i ) � f 2(x i � 1)j <
p �

k : Hence f ([x i ; x i � 1]) is contained is a box whose with area

at most
� p �

k

� 2 = �
k . Since there arek such partitions, this means that f (I ) can covered byk-

rectangles whose total width at is at most k � �
k = � . Since � was arbitrary, this completes the

proof.

xmax

ymax

Figure 33: By looking at the maximum speed that the function attains, one can �nd the worst
case box the each subinterval (marked by black dots) �ts into. As we increase the number of
subintervals, the number of necessary boxes increases linearly, while the area of each box decreases
proportional to the � n-th power.

De�nition 4.22

A curve f : [a; b] ! Rn is said to be piecewiseC1 if it is C1 at all but a �nite number of
points.

Corollary 4.23

Any set S � R2 such that @Sis de�ned by a piecewiseC1 curve is Jordan measurable.

Proof. The proof of this corollary is immediate. If S has a boundary de�ned by a piecewise smooth
curve, then its boundary has zero Jordan measure by Theorem 4.21. This is precisely the de�nition
for S to be Jordan measurable.

Theorem 4.24

If R is a rectangle andf is continuous on R up to a set of Jordan measure 0, thenf is
integrable.

Proof. This proof is e�ectively the same as Theorem 4.16.
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Integrability over non-Rectangles: Of course, we would like to be able to integrate functions
over other (bounded) sets that aren't just rectangles! If S � R2 is a bounded set, we can always
�nd a su�ciently large rectangle R containing S. We thus need only extendf : S ! R2 in a way
that should not a�ect which rectangle we take. The way to do this is to de�ne the characteristic
function of S:

� S(x) =

(
1 x 2 S

0 otherwise
:

S

R

Figure 34: Every bounded set can be placed inside a rectangle.

Thus the function f � S : R ! R is just f (x) on S and is identically 0 everywhere else. Note
that the choice of enveloping rectangle really doesn't a�ectf � S since we have extendedf by zero
outside of S. We would now like to check that f � S is integrable on R so that it makes sense to
write down

RR
S f dA.

Theorem 4.25

If S is Jordan measurable and the set of discontinuities off : S ! R2 has zero measure,
then f is Riemann integrable onS.

Proof. It is easy to convince ourselves that the discontinuities of the characteristic function� S

occur exactly at the boundary @S. If S is Jordan measurable, thenm(@S) = 0. The discontinuities
of f are also Jordan measure zero, hence the total discontinuities off � S has zero measure, so this
function is integrable.

More rigorously, �x a rectangle R such that S � R. Let D be the set of discontinuities of
f and note that the set of discontinuities of � S is given by @S. It then follows that the set of
discontinuities of f � S on R is D [ @S. Since the union of zero measure sets has zero measure,f � S

has zero-measure discontinuities onR and hence is Riemann Integrable by Theorem 4.24.

In particular, we have the following Corollary:
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Corollary 4.26

If S � R2 is Jordan measurable thenm(S) =
Z

S
� S:

4.2.2 Integration Beyond 2-dimensions

Now we generalize things for (hopefully!) the last time. A rectangle inRn is any set of the form

R = [ a1; b1] � � � � � [an ; bn ];

and has volumeV(R) = ( b1 � a1) � � � � � (bn � an ). A partition of R may be speci�ed by an
n-partitions of R, each one decomposing [ai ; bi ]. For ( i 1; : : : ; i n ) a collection of positive integers, let
R(i 1 ;:::;i n ) be the sub-rectangle corresponding to the (i 1; : : : ; i n ) element. A tagged Riemann sum
over R is any sum of the form

S(f; P ) =
X

(i 1 ;:::;i n )

f
�
t (i 1 ;:::;i n )

�
V (R(i 1 ;:::;i n ) ); t 2 R(i 1 ;:::;i n ) :

As usual, one can de�ne the upperU(f; P ) and lower u(f; P ) Riemann sums using the supremum
and in�mum, in which case we say that f : R � Rn ! R is integrable precisely when for every
� > 0 there exists a partition P such that

U(f; P ) � u(f; p ) < �:

To extend the de�nition of the integral beyond rectangles, we once again introduce the Jordan
measure. The Jordan measure of a setS is de�ned as the in�mum of the volumes of all covering
rectangles, andS is Jordan measurable if its boundary has measure zero. Ifk < n then the image
of a C1 map f : Rk ! Rn has Jordan measure zero. A functionf : S ! R is then integrable if S is
Jordan measurable and if the set of discontinuities off on S has Jordan measure zero. We denote
the integral of such a function as:

Z
� � �

Z

S
fdV =

Z
� � �

Z
f (x)dnx =

Z
� � �

Z
f (x1; : : : ; xn ) dx1 � � � dxn :

The only thing left to mention is the Mean Value Theorem:

Theorem 4.27: Mean Value Theorem

Let S � Rn be a compact, connected, and Jordan measurable set, with continuous functions
f; g : S ! R satisfying g � 0. Then there exists a point a 2 S such that

Z
� � �

Z

S
f (x)g(x)dnx = f (a)

Z
� � �

Z

S
g(x)dnx:

Proof. SinceS is compact and f is continuous onS, it attains its max and min on S, say M and
m respectively. Sinceg � 0 we have

m
Z

� � �
Z

S
g(x)dnx �

Z
� � �

Z

S
f (x)g(x)dnx � M

Z
� � �

Z

S
g(x)dnx:
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or equivalently

m �

R
� � �

R
S f (x)g(x)dnx

R
� � �

R
S g(x)dnx

� M:

Since f is continuous and S is connected, f is surjective on [m; M ] and hence the Intermediate
Value Theorem implies the middle term is f (a) for some a 2 S, as required.

The student has likely noticed that this section is �lled with theory, and zero computation. The
reason for this is that computing integrals in multiple dimensions is an incredibly di�cult thing to
do. The reason is that for any partitioning subrectangle, we are looking at the supremum/in�mum
of our function restricted to that n-dimensional rectangle. In a sense, we have to integrate in all
n-dimension simultaneously. This is not easy to do, so our next section will introduce a method by
which we integrate our function in `slices.'

4.3 Iterated Integrals

In developing the theory of integration in the plane and higher, it was necessary to consider par-
titions of rectangles and hence, in essence, to consider the area of function with respect to an
in�nitesimal area d A. Of importance is that this area term encapsulates information about every
dimension simultaneously, but simultaneity is a computational obstacle. For example, when learn-
ing to di�erentiate a multivariate function, we needed to invest a great deal of energy into simply
analyzing the change of the functionin a single, speci�c direction (ie the partial derivatives). If we
want to know how the function is changing in an arbitrary direction, we then have the directional
derivative du f = r f � u, so that the gradient r f somehow represents that simultaneous derivative
of f at any point.

Consider now the problem of computing the upper sumU(f; P ) for a function f on a partition
P. For each subrectangle Rij , one would need to determine the supremum off on Rij . If our
function is C1, even this involves solving for critical points on the interior, then using the method
of Lagrange multipliers on the boundary. What a nightmare!

From our single variable calculus days, we know that integration is often more di�cult that the
formulaic recipe-following nature of di�erentiation. The fact that \simultaneous" di�erentiation
required so much work does not bode well for the idea of simultaneous integration. So as math-
ematicians, we won't bother trying to �gure it out. Instead, we will apply the mathematicians
favourite tool: We will reduce simultaneous integration to a problem we have solved before: one
dimensional integration.

As always, we start out with a rectangle R = [ a; b] � [c; d] in the plane, partitioned into P =
Px � Py = f x0 < � � � xng � f y0 < � � � ym g. The prototypical Riemann sum which corresponds to this
partition is

S(f; P ) =
X

i 2f 1;:::;n g
j 2f 1;:::;m g

f ( fx ij )A(Rij ) =
X

i 2f 1;:::;n g
j 2f 1;:::;m g

f (~x i ; ~yj )� x i � yj

where (~x i ; ~yj ) 2 [x i � 1; x i ] � [yj � 1; yj ] and � x i = ( x i � x i � 1); � yj = ( yj � yj � 1). Now if we look at
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this sum, we can decompose it as

X

i 2f 1;:::;n g
j 2f 1;:::;m g

f (~x i ; ~yj )� x i � yj =
mX

j =1

� nX

i =1

f (~x i ; ~yj )� x i

| {z }
�

Rb
a f (x; ~yj ) dx

�
� yj : (4.1)

The heuristic idea is as follows: if we de�ne the function

gk (~y) = lim
` (Px )! 0

S(f; P x � Py) =
Z b

a
f (x; ~y) dx

then (4.1) gives

Z

R
f (x; y) dx = lim

` (P )! 0

mX

j =1

� nX

i =1

f (~x i ; ~yj )� x i

�
� yj

= lim
` (Py )! 0

mX

j =1

gk (~yk )� yk

=
Z d

c

� Z b

a
f (x; y) dx

�
dy

Now strictly speaking, what we have done here is not kosher, since in particular we had to
assume two things:

1. The limit `(P) ! 0 is equivalent to �rst doing `(Px ) ! 0 then `(Py) ! 0, and

2. Each of the \slices" f (x; ~yk ) is integrable.

If we make these assumptions and add a pinch of rigour (which we will not do here), we get

Theorem 4.28: Fubini's Theorem

Let R = [ a; b] � [c; d] be a rectangle andf : R ! R an integrable function on R. If for
eachy0 2 [c; d] the function f y0 : [a; b] ! R given by x 7! f (x; y0) is integrable on [a; b], and
g(y) =

Rb
a f (x; y) dx is integrable on [c; d], then

Z

R
f dA =

Z d

c

� Z b

a
f (x; y) dx

�
dy:

Of course, the theorem also holds with the roles ofx and y reversed.

Example 4.29

Determine the volume under the function f (x; y) = xex2 � y on the rectangleR = [0 ; 1]� [0; 1].

Solution. Sincef is a continuous function on R it is integrable, and so certainly each of the slices
f y(x) or f x (y) are integrable as well. We will do the calculation both ways to show that the integral
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g(y0)

y
x

f (x; y)

y0

Figure 35: Fixing a y0, we look at the function f (x; y0). If this function is integrable for each y0,
then the value of g(y0) is precisely

Rb
a f (x; y0) dx, the shaded region. Ifg is also integrable, then we

can compute the integral of f by these slices.

yields the same results. If we integrate �rst with respect to x then y, we have
Z 1

0

� Z 1

0
xex2 � y dx

�
dy =

Z 1

0

�
1
2

ex2 � y
� 1

x=0
dy

=
1
2

(e � 1)
Z 1

0
e� y dy

=
1
2

(e � 1)
�
� e� y � 1

0 = �
1
2

(e � 1)(e� 1 � 1)

= 1 � cosh(1):

Conversely, let us instead integrate with respect toy �rst. We have
Z 1

0

� Z 1

0
xex2 � y dy

�
dx = � (e� 1 � 1)

Z 1

0
xex2

dx

= � (e� 1 � 1)(e � 1) = 1 � cosh(1):

As expected, the result was the same either way. �

Of course, the above example was very simple since we could decompose our functionf (x; y) =
f 1(x)f 2(y), but the result still holds even when such a decomposition is not possible.

Now rectangles are rather boring objects about which to integrate, so we again look at Jordan
measurable setsS � R2. In particular, we will suppose that S has its boundary de�ned by piecewise
C1 curves; say

S = f (x; y) : a � x � b; � (x) � y � � (x)g:

In this case, our integration becomes

Z

S
f dA =

Z b

a

" Z � (x)

� (x)
f (x; y) dy

#

dx:
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Often times, the most di�cult part of solving an iterated integral question comes from determining
the bounding functions, though sometimes we are fortunate and they are already prescribed.

Example 4.30

Find the integral of the function f (x; y) = y
x5+1 on the intersection of

f y � 0g \ f x � 1g \
�

y � x2	
:

Solution. In any situation of performing iterated integrals, it is best to draw a diagram of the region
over which we are integrating. In our case, we can see that the region may be summarily described
as

S =
�

(x; y) : 0 � x � 1; 0 � y � x2	
:

x

y

y = x2

Certainly our function is continuous on S (since x5 + 1 6= 0 on this set) and so is integrable,
along with any of the slices. This means we may apply Fubini's theorem:

ZZ

S
f dA =

Z 1

0

" Z x2

0

y
x5 + 1

dy

#

dx

=
1
2

Z 1

0

�
y2

x5 + 1

� x2

0
dx =

1
2

Z 1

0

x4

x5 + 1
dx

=
1
10

ln jx5 + 1 j10 =
ln(2)
10

: �

Note that the region in Example 4.30 also could have been described by

S = f 0 � y � 1;
p

y � x � 1g;

so we also could have (attempted to) compute the integral as

ZZ

S
f dA =

Z 1

0

" Z 1

p
y

y
x5 + 1

dx

#

dy:
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1

x

y

y = x

1

S

Figure 36

This probably would not have worked as nicely though, since 1
x5+1 is not easy to integrate. This

suggests that being able to rewrite our domain is a useful skill, since sometimes we are given the
boundary, but the problem is not amenable to the given description.

Example 4.31

Determine the integral of the function f (x; y) = ey2
on the region bounded by the lines

y = 1, x = 0 and y = x.

Solution. The region is a simple triangle, given in Figure 36, which can be written as either of the
following two sets

S = f 0 � x � 1; x � y � 1g

= f 0 � y � 1; 0 � x � yg:

If we try to use the �rst description, we get

Z

S
f dA =

Z 1

0

� Z 1

x
ey2

dy
�

dx

but the function ey2
has no elementary anti-derivative, and we are stuck. On the other hand, using

the second description gives

Z

S
f dA =

Z 1

0

� Z y

0
ey2

dx
�

dy

=
Z 1

0

h
xey2

i x= y

x=0
dy =

Z 1

0
yey2

dy

=
�

1
2

ey2
� 1

y=0
=

1
2

(e � 1): �
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Example 4.32

Determine
RR

S xy dA where S is the region bounded byy = x � 1 and y2 = 2x + 6.

x

y

y = x � 1

y2 = 2x + 6

Solution. We begin by drawing a rough picture of what the boundary looks like. Notice that the
intersection of these two lines occurs when

(x � 1)2 = 2x + 6 ; , x2 � 4x � 5 = 0; , x = 5 ; � 1;

which corresponds to the pairs (� 1; � 2) and (5; 4). Now our �gure shows that it will be very hard
to write this as f a � x � b; � (x) � y � � (x)g, so instead we try to switch the variables. In that
case, notice that we can writeS as

S =
�

� 2 � y � 4;
1
2

y2 � 3 � x � y + 1
�

:

Now integrating, we get

Z

S
xy dA =

Z 4

� 2

" Z y+1

1
2 y2 � 3

xy dx

#

dy

=
1
2

Z 4

� 2

�
x2y

� y+1
1
2 y2 � 3 dy

=
1
2

Z 4

� 2
y

"

(y + 1) 2 �
�

1
2

y2 � 3
� 2

#

dy

=
1
2

Z 4

� 2

�
�

y5

4
+ 4y3 + 2y2 � 8y

�
dy

=
1
2

�
�

y6

24
+ y4 +

2y3

3
� 4y2

� 4

� 2
= 36: �
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Thus far we have been fortunate: most of our examples are clearlyC1 on the region on which
they are de�ned, and all the hypotheses of Fubini's theorem become easily veri�ed. However, there
are instances where Fubini will not hold, as the following example demonstrates.

Example 4.33

Consider the function f (x; y) =
xy(x2 � y2)
(x2 + y2)3 on the rectangleR = [0 ; 1] � [0; 1].

Solution. Let us na•�vely assume that Fubini's theorem applies. Notice that f is symmetric in x
and y with the exception of a negative sign in the numerator. Hence

Z 1

0

xy(x2 � y2)
(x2 + y2)3 dx =

1
2

Z 1+ y2

y2

y(u � 2y2)
u3 du

substitution with
u = x2 + y2

=
y
2

Z 1+ y2

y2

1
u2 du � y3

Z 1+ y2

y2

1
u3 du

=
�
�

y
2u

+
y3

2u2

� 1+ y2

y2

= �
y

2(1 + y2)
+

y3

2(1 + y2)2

= �
y

2(1 + y2)2 :

This in turn is easily integrated with respect to y, to yield

Z 1

0

�
�

y
2(1 + y2)2

�
dy = �

1
4

Z 2

1

1
u2 du u = 1 + y2

= �
1
4

�
1
u

� 2

1
=

1
8

:

The computation in the other order is exactly the same, except one gets an extra negative sign
coming from the original substitution u = x2 + y2. Thus

Z 1

0

� Z 1

0

xy(x2 � y2)
(x2 + y2)3 dy

�
dx = �

Z 1

0

� Z 1

0

xy(x2 � y2)
(x2 + y2)3 dx

�
dy

and the integrals are not equal. The reason why Fubini's theorem fails is thatf is not integrable
on R. Indeed, f is not even bounded onR and so certainly cannot be integrable.

One might wonder if the only way the solutions will disagree is a minus-sign. The answer is no,
as can be checked by using a non-symmetric rectangle. As an exercise, the student should check
that if the rectangle R = [0 ; 2] � [0; 1] is used instead, the resulting integrals will di�er in value as
well as sign.

�
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4.3 Iterated Integrals 4 Integration

Triple! Integrals: Of course we have limited our discussion thus far to functions of two variables,
but there was no reason to (other than to keep ourselves from headaches). Naturally, we can extend
to three dimensions and beyond, and so perform integration inn-variables. However, because
drawing diagrams is so critical for doing iterated integrals, we typically tend to avoid doing them
in 4-dimensions or greater. In this course, we will not see integrals in more than 3-variables.

This being said, what happens when we want to integrate a function in three variables? The
solution is to proceed just as before, except that now we write our domain as

S = f (x; y; z) : a � x � b; � (x) � y � � (x); ' (x; y) � z �  (x; y)g;

and the corresponding integral becomes

ZZZ

S
f (x; y; z) dA =

Z b

a

" Z � (x)

� (x)

" Z  (x;y )

' (x;y )
f (x; y; z) dz

#

dy

#

dx:

Example 4.34

Determine
RRR

S z dA if S is the set bounded by the planesx = 0 ; y = 0 ; z = 0 and x + y+ z =
1.

Solution. This shape is a tetrahedron whose boundaries are the three standard unit normals
f ei gi =1 ;2;3 and the origin (0; 0; 0). Now 0 � x � 1 is evident, and projecting into the xy-plane
we see that 0� y � 1 � x. Finally, we clearly have that 0 � z � 1 � x � y so that

ZZZ

S
z dA =

Z 1

0

� Z 1� x

0

� Z 1� x � y

0
z dz

�
dy

�
dx

=
Z 1

0

" Z 1� x

0

�
z2

2

� 1� x � y

0
dy

#

dx

=
1
2

Z 1

0

� Z 1� x

0
(1 � x � y)2 dy

�
dx =

1
2

Z 1

0

�
�

(1 � x � y)3

3

� 1� x

0
dx

=
1
6

Z 1

0
(1 � x)3 dx =

1
6

�
�

(1 � x)4

4

� 1

0
=

1
24

�

Example 4.35

Determine
RRR

S(2x + 4z)dV where S is the region bounded by the planesy = x, z = x,
z = 0, and y = x2.

Solution. The student should stare at these equations for some time and try to visualize the space.
In particular, a nice parameterization of the space can be given as

S =
�

0 � x � 1; x2 � y � x; 0 � z � x
	

:
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4 Integration 4.4 Change of Variables

Our function is clearly C1 on this set, so we can apply Fubini to get

ZZZ

S
fdV =

Z 1

0

� Z x

x2

� Z x

0
(2x + 4z) dz

�
dy

�
dx

=
Z 1

0

� Z x

x2
2x2 + 2x2 dy

�
dx

= 2
Z 1

0

�
4x3 � 4x4�

dx

= 4
�

1
4

x4 �
1
5

x5
� 1

0
=

1
5

: �

4.4 Change of Variables

There is a great idea amongst physicists that the properties of a physical system should be invariant
of how you choose to look at that system. Consider for example, a driver racing around a circular
track. We should be able to determine fundamental physical facts about the driver regardless of
whether we are looking at the driver from the stands, from the center of the track, or even from
the backseat of the car. However, each point of view o�ers its own advantages and disadvantages.
For example, the observer at the center of the track only sees a change in the angle of the car
relative to the observer, with the distance remaining constant. On the other hand, the backseat
observer will see the driver experience the �ctitious centrifugal force, while the external observers
will simply see inertia.

Another exceptionally important example is the theory of special relativity. E�ectively, if one
starts with the simple (but unintuitive) assumption that the speed of light is constant in every
frame of reference, then much of theory of special relativity (such as time/length dilation, breaking
simultaneity) can be derived simply by analyzing what happens from di�erent view points. This
section is dedicated to analyzing how this is done mathematically, and how we can use this to make
headway on di�cult integrals.

4.4.1 Coordinates

It is di�cult to describe what we mean by a set of coordinates without using more technical lan-
guage. The e�ective idea is that a coordinate system should be a way of (uniquely) and continuously
describing a point in your space. Cartesian coordinates are those with which we are most familiar,
and are given by (x; y), describing the horizontal and vertical displacement of a point from the
origin. However, the origin itself corresponds to an arbitrary choice: choose some other point in
the plane and call that the origin, and notice that fundamentally, our space has not changed. For
example, a circlex2 + y2 = 1 is in many ways the same as the circle (x � a)2 + ( y � b)2 = 1 for any
choice of (a; b), we have simply \moved it." Such a transformation is called a translation and are
described as functionsf (x; y) = ( x � a; y � b).

Similarly, one might choose to change how we want to measure distances, resulting in ascaling
of the from f (x; y) = ( �x; �y ) for �; � 6= 0 (when � < 0 this corresponds to reecting about the
y-axis, and similarly � < 0 is reection about the x-axis). We could even rotate our coordinate
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4.4 Change of Variables 4 Integration

system by an angle� via the map f (x; y) = (cos( � )x+sin( � )y; cos(� )y� sin(� )x): Combining scaling,
rotations, and translations, one getsa�ne transformations f (x; y) = ( c1x + c2y+ c3; d1x + d2y+ d3).

But of course we have seen many other types of coordinate systems. For example,polar coordi-
nates are described by the function (x; y) = f (r; � ) = ( r cos(� ); r sin(� )). In R3 we have cylindrical
and spherical coordinates:

(x; y; z) = f (r; �; z ) = ( r cos(� ); r sin(� ); z)
(x; y; z) = g(�; �; � ) = ( � sin(� ) cos(� ); � sin(� ) sin(� ); � cos(� ))

Though one problem faced with these set of coordinates is that without restrictions onr; �; �; � ,
the coordinate system may not be unique! For example, the following all represent the same set of
points

(cos(� ); sin(� )) = (cos( � � ); sin(� � )) = ( � cos(0); � sin(0)):

For polar coordinates we thus demand thatr 2 (0; 1 ) and � 2 [0; 2� ). For spherical coordinates,
one takes� 2 (0; 1 ); � 2 [0; � ], and � 2 [0; 2� ). Unfortunately, this means that we must make a
sacr�ce in the collection of points we are able to represent, for example, the origin (0; 0) cannot be
written in polar coordinates. Hence our function is a mapf : (0; 1 ) � [0; 2� ) ! R2 n f (0; 0)g.

There are countless other types of coordinate systems one might want to use, for example
(x; y) = f (�; � ) = ( e� ; � 2), though again we run into uniqueness issues and need to restrict our sets
in order to have a \good" coordinate system. For example, in this case our good coordinate system
is between the setsf : R � [0; 1 ) ! (0; 1 ) � [0; 1 ):

So what restriction should we place onf to ensure that we have a good coordinate system
between setsU; V � Rn? Just for things to be unique we should certainly require that f : U ! V
is bijective (so that f � 1 : V ! U exists) and for things to play well with calculus, we should also
require that f and f � 1 be di�erentiable.

De�nition 4.36

If U; V � Rn and f : U ! V is a C1 bijection with C1 inverse f � 1 : V ! U, then we say
that f is a di�eomorphism .

Once we have a di�eomorphism f : U ! V we know that our spacesU; V are, in a sense,
identical with respect to di�erentiation. Importantly however, the notion of lengths/volume may
have changed. As our end goal will be to apply di�eomorphisms to integrals, we want to examine
in�nitesimal changes.

Consider for example the di�eomorphism f : (0; 1 ) � [0; 2� ) ! R2 n f (0; 0)g given by polar
coordinates

(x; y) = f (r; � ) = ( r cos(� ); r sin(� )) :

It is easy to see that f is C1, and moreover it has an inverse

(r; � ) = f � 1(x; y) =
� p

x2 + y2; arctan
� y

x

��
:

It may not be immediately obvious that f � 1 is di�erentiable, but the absence of the origin (0; 0)
ensures that this is the case.

c 2015 Tyler Holden

129



4 Integration 4.4 Change of Variables

Let's see how areas change under this transformation. Consider a rectangle [a; b] � [�; � ] in
(r; � )-space; that is, a � r � b and � � � � � . Applying f , we get an arc-segment, as illustrated in
Figure 37.

r

�

a b

�

�

x

y
�

�

a

b

Figure 37: How a simple square in polar coordinates (left) changes under the mapf (r; � ) =
(r cos(� ); r sin(� )).

If we think of these as describing in�nitesimal elements, thenDf : Rn ! Rn is a linear trans-
formation between the f dr; d� g basis and thef dx; dyg basis,

D f r;� =
�

cos(� ) � r sin(� )
sin(� ) r cos(� )

�
;

and we can apply the following theorem:

Theorem 4.37

If T : V ! W is a linear transformation between vector spaces of the same dimension, and
S � V is measurable with measurem(S), then

m(TS) = j det T jm(S):

One can easily check thatj det D f j = r , and so dx dy = r dr d� .

Exterior Algebra: There is another technique for deriving this relationship, although the rigours
of the theory would take us very far a�eld. Instead, one can summarize the basic rules of how to
manipulate in�nitesimal terms. Let d x; dy; and dz represent three in�nitesimal terms (though
this generalizes to a higher number of terms, and not just Cartesian coordinates).

1. The order of multiplication matters: d x dy 6= d y dx, so pay careful attention to the ordering,

2. Otherwise, multiplication can be done as normal:

(f dx + gdy)(h dz) = fh dx dz + gh dy dz;

3. To interchange two in�nitesimals which are adjacent, introduce a � sign:

dx dy dz = � dy dx dz = � dx dz dy;
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4.4 Change of Variables 4 Integration

4. If two of the same in�nitesimal appear, the term becomes zero:

dx dx = 0 ; dx dy dy = 0 ; dx dz dx = 0 :

For example, if (x; y) = ( r cos(� ); r sin(� )), then

dx = d(r cos(� )) = cos( � ) dr � r sin(� ) d�

dy = d(r sin(� )) = sin( � ) dr + r cos(� )d�

dx dy = (cos(� ) dr � r sin(� ) d� )(sin( � ) dr + r cos(� ) d� )

= cos(� ) sin(� ) dr dr
| {z }

=0

� r sin2(� ) d� dr + r cos2(� ) dr d� � r 2 sin(� ) cos(� ) d� d�
| {z }

=0

= r (sin2(� ) + cos2(� )) dr d�

= r dr d�:

In fact, notice that rules 3 and 4 are very similar to determinants: Interchanging two columns
corresponds to introducing a minus sign, and if two rows are linearly dependent, the determinant
is zero. This is not a coincidence, as it turns out the exterior algebra for in�nitesimals is intimately
related to determinants.

4.4.2 Integration

The content of this section is extraordinarily useful but the proofs are cumbersome and not par-
ticularly enlightening. Consequently, we will motivate the situation by analyzing what happens in
the one-dimensional case, before stating the major theorem (without proof).

In the one-dimensional case, there is not much in the way of variable changing that can be done!
Nonetheless, the student has already seen a plethora of examples which greatly emulate coordinate
changing: The method of substitution. For example, when integrating the equation

Z 3

2

x
x2 � 1

dx;

the student should (hopefully) realize that the appropriate substitution here is u = x2 � 1 so that
du = 2x dx, and the integral becomes

Z 3

2

x
1 � x2 dx =

1
2

Z 8

3

1
u

du = [ln juj]83 = ln(8) � ln(3) :

In e�ect, the theory behind why this works is that we have realized that working in the x-coordinate
system is rather silly since it makes our integral look complicated. By changing to theu = 1 + x2

coordinate system, the integral reduces to something which we can easily solve.

The theory is as follows (though our presentation might seem a bit backwards compared to how
such integrals are usually computed): The fundamental theorem of calculus easily tells us that

Z b

a
f (g(x))g0(x) dx =

Z g(b)

g(a)
f (u) du (4.2)
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where u = g(x) so that du = g0(x) dx. The idea is that by introducing the auxiliary function
u = g(x) we were able to greatly reduce the problem to something more elementary, and that is
the goal of changing variables.

Unfortunately, there is never a single way to change variables, and it can make our notation a
bit of a headache. For example, what if we had instead chosen the substitutionu = 1 � x2 in the
previous example, so that the integral became

Z 3

2

x
x2 � 1

dx =
1
2

Z � 8

� 3

1
u

du:

Notice that the bounds of integration are in the wrong order, since certainly � 3 > � 8. We of
course �x this by introducing a negative sign and interchanging the bounds and arrive at the same
answer, but the point is that we do not want to have to worry about whether we have changed
the orientation 6 of the interval (since this will become a grand nightmare in multiple dimensions!).
Hence if I = [ a; b], we will write (4.2) as

Z

I
f 0(g(x)) jg0(x)j dx =

Z

g(I )
f (u) du:

What is bothersome about this equation is that g appears on both sides of the equation. Ifg is a
change of coordinates (so that it is a di�eomorphism onI ), then there is no harm in replacing g
with g� 1. Let J = g(I ) so that we get

Z

g� 1 (J )
f 0(g(x)) jg0(x)j dx =

Z

J
f (u) du:

So what do we do in higher dimension?

Theorem 4.38: Change of Variables

If S; T � Rn are measurable andG : S ! T is a di�eomorphism, then for any integrable
function f : T ! R we have

Z

T
f (u) du =

Z

G � 1 (T )
f (G(x)) j det DG(x)j dx:

The term j det DGj is known as theJacobian of the change of variables.

Again, this proof is laborious and of no great value, so we omit it here. Note that this e�ectively
say that the element j det DG(x)j represent the scaling of the volume element we had discussed
before. Indeed, previously we saw that the change in area resulting from using polar coordinates
was to multiply by r . If ( x; y) = G(r; � ) = ( r cos(� ); r sin(� )) then

j det DG(r; � )j =

�
�
�
�det

�
cos(� ) � r sin(� )
sin(� ) r cos(� )

� �
�
�
�

=
�
�r cos2(� ) + r sin2(� )

�
�

= r

6This is a remarkably subtle but important point that does not manifest in 1-dimension but proves to be truly
inconvenient in higher dimensions. There is an entire theory of orientability of surfaces and higher dimensional spaces,
and if your space is not orientable then it is di�cult to do integration.
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which exactly agrees with our previous assessment that dx dy = r dr d� . The following are the
two most often used coordinate changes in three dimensions:

Example 4.39

1. Cylindrical Coordinates: Recall that cylindrical coordinates are related to Carte-
sian coordinates by (x; y; z) = g(r; �; z ) = ( r cos(� ); r sin(� ); z). Hence

j det Dg(r; �; z )j =

�
�
�
�
�
�
det

0

@
cos(� ) � r sin(� ) 0
sin(� ) r cos(� ) 0

0 0 1

1

A

�
�
�
�
�
�

= r:

This is not terribly surprising: cylindrical coordinates are polar coordinates with the
z-direction una�ected. Hence we only expect the scaling to occur in thexy-dimensions,
and this is indeed what we see.

2. Spherical Coordinates: Cartesian and Spherical coordinates are related by
(x; y; z) = g(�; �; � ) = ( � sin � cos�; � sin � sin �; � cos� ), and

j det Dg(�; �; � )j =

�
�
�
�
�
�
det

0

@
sin � cos� � cos� cos� � � sin � sin �
sin � sin � � cos� sin � � sin � cos�

cos� � � sin � 0

1

A

�
�
�
�
�
�

= cos �
�
� 2 cos� sin � cos2 � + � 2 cos� sin � sin2 �

�

+ � sin �
�
� sin2 � cos2 � + � sin2 � sin2 �

�

= � 2 cos2 � sin � + � 2 sin2 � sin �

= � 2 sin �

Example 4.40

Let (u; v) = ( er cos(� ); er sin(� )). Determine du dv as a function of dr d� and vice versa.

Solution. Computing the Jacobian of the transformation one gets

det
�

er cos(� ) er sin(� )
� er sin(� ) er cos(� )

�
= e2r ;

and so du dv = e2r dr d� .

To compute dr d� in terms of du; dv one could try to �nd the inverse of the coordinate
transformation, but that would prove exceptionally di�cult. Instead, recognize that u2 + v2 = e2r

and hence

dr d� =
1

e2r du dv =
du dv

u2 + v2 : �

We can now exploit change of variables to make integration much easier:
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Example 4.41

Let R =
�

(x; y) 2 R2 : 1 � x2 + y2 � 3
	

. Evaluate
RR

R ex2+ y2
dA.

Solution. Our region R is simply the area between the circles of radius 1 and
p

3, so we use polar
coordinates. Let (x; y) = ( r cos(� ); r sin(� )) so that S = [1 ;

p
3) � [0; 2� ) is just a rectangle in (r; � )

space, andG : S ! T is a di�eomorphism. Integrating using change of variables gives

ZZ

R
ex2+ y2

dA =
Z p

3

1

Z 2�

0
er 2

r dr d� = 2 �
Z p

3

1
rer 2

dr d�

= �
h
er 2

i p
3

r =1
= �

�
e3 � e

�
�

Example 4.42

Let S be the region bounded by the curvesxy = 1, xy = 3, x2 � y2 = 1 and x2 � y2 = 4.
Compute

RR
T (x2 + y2) dA:

Solution. The region suggests that we should take a change of variables of the formu = xy and
v = x2 � y2, so that setting

T = f 1 � u � 3; 1 � v � 4g

implies that G : S ! T given by (u; v) = G(x; y) = ( xy; x 2 � y2) is a di�eomorphism. Now

j det DG(x; y)j =

�
�
�
�det

�
y x

2x � 2y

� �
�
�
�

= 2( x2 + y2):

Thus du dv = 2( x2 + y2) dx dy and our integral becomes

ZZ

S
(x2 + y2) dx dy =

1
2

Z

T
du dv = 3 : �

Example 4.43

Find the area bounded between the spherex2 + y2 + z2 = 4 and the cylinder x2 + y2 = 1.

Solution. Let B be the region bounded. Let's use cylindrical coordinates, so that dx dy dz =
r dr d� dz. Now by drawing a picture, it is clear that we are symmetric about reection in the
xy-plane, so we need only �nd the volume bounded by the upper-half hemisphere and the cylinder,
B+ . The total area will be governed by r 2 (0; 1) and � 2 (0; 2� ), but our z coordinate will by
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represented byz =
p

4 � x2 � y2 =
p

4 � r 2. Our integral is thus

Z

B +

dx dy dz =
Z 2�

0

Z 1

0

Z p
4� r 2

0
r dz dr d�

=
Z 2�

0

Z 1

0
r
p

4 � r 2 dr d�

=
Z 2�

0

�
�

1
3

(4 � r 2)3=2
� 1

r =0
d�

=
2�
3

h
8 � 3

p
3
i

Hence the fully bounded area is 2B+ = 4�
3

�
8 � 3

p
3
�
. �
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5 Vector Fields

Section 4 was principally concerned with integrating functions f : Rn ! R, whose geometric
interpretation was to �nd the area under the graph of f on some domain. In contrast to this, we
now turn our focus to the more general case of functionsF : Rn ! Rn . However, the geometric
interpretation of what an integral is will change dramatically. It no longer makes sense to ask about
things like upper and lower Riemann sums sinceF(x) 2 Rn , there is measure of what is \largest"
or \smallest," so we are no longer thinking about areas under graphs.

Instead, the function F describes what is called avector �eld . A vector �eld is function which
prescribes to every pointx 2 Rn an arrow, F(x). For example, consider the vector �eld F(x; y) =
(x2; � y). To determine what arrow to place at x = (1 ; 2) we computeF(2; 1) = (4 ; � 1).

y

x
2 3 4 5 6

� 1

1
(2; 1)

F(2; 1)

We can visualize vector �elds by choosing multiple points and drawing the vectors which cor-
respond to them, as in Figure 38

Vector �elds can be used to describe physical �elds and forces. For example, the force exhibited
at a single point by an electromagnetic �eld or gravity may be conveyed as a vector �eld. On the
other hand, a vector �eld might describe the ow of a liquid, such as water in a stream or air over
wing. Our goal in this section is to see how we can use vector �elds to compute useful quantities,
which often have physical interpretations such as ux or work.

5.1 Vector Derivatives

Depending on whether a given function is vector-valued or not, there are multiple di�erent kinds
of derivatives that we can take. In this section, we are going to look at four such operators: the
gradient (which you have already seen), divergence, curl, and the Laplacian. In turns out that the
�rst three of these are all actually the same operator in disguise, but that is a rather advanced
topic which we (probably) won't cover in this class. The trick in all of these cases is to think of the
nabla operator r as a vector whose components are the partial derivative operators. Hence inRn ,
the nabla operator is

r =
�

@
@x1

;
@

@x2
; : : : ;

@
@xn

�
:

1. Gradient: Let f : Rn ! R be a C1 function. The gradient of f is

gradf = r f =
�

@f
@x1

; : : : ;
@f
@xn

�
:
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x

y

F(x; y) = (1 ; x)

x

y

F(x; y) = ( x; y)

x

y

F(x; y) = ( y; � x)

x

y

F(x; y) = (sin( x); cos(y))

Figure 38: A visualization of several vector �elds. Using many points gives us an intuitive idea for
how these vectors "ow."
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The gradient measures how quickly the functionf is changing in each of the given coordinate
axes, andr f in its totality gives the direction of steepest ascent. As an example computation,
if f (x; y; z) = z sin(xy) then

r f (x; y; z) =
�

@
@x

[z sin(xy)] ;
@
@y

[z sin(xy)] ;
@
@z

[z sin(xy)]
�

= ( zy cos(xy); zx cos(xy); sin(xy)) :

2. Divergence: If F : Rn ! Rn is a C1-vector �eld, then the divergenceof F is

div F = r � F =
@F1
@x1

+ � � � +
@Fn
@xn

:

The divergence is a measure of thein�nitesimal ux of the vector �eld; that is, the amount of
the �eld which is passing through an in�nitesimal surface area. As an example, ifF(x; y; z) =
(x2; y2; z2) then

div F(x; y; z) =
�

@
@x

x2
�

+
�

@
@y

y2
�

+
�

@
@z

z2
�

= 2x + 2y + 2z:

3. Curl: If F : R3 ! R3 is a C1 vector �eld in R3, then the curl of F is

curl F = r � F =
�

@F3
@x2

�
@F2
@x3

;
@F1
@x3

�
@F3
@x1

;
@F2
@x1

�
@F1
@x2

�
:

The curl measures thein�nitesimal circulation of the vector �eld. Furthermore, notice that
the curl only makes sense inR3. There are higher dimensional analogs of the curl, but they
are very messy to write down. For example, ifF(x; y; z) = ( x2y; xyz; � x2y2) then

curl F(x; y; z) =
�
� 2x2y � xy; 0 � (� 2xy2); yz � x2�

=
�
� xy(2x + 1) ; 2xy2; yz � x2�

:

4. Laplacian: If f : Rn ! R is a C1 function, then the Laplacian of f is

r 2f = � f =
@2f
@x21

+ � � � +
@2f
@x2n

:

Notice that one can also write r 2 = r � r so that the Laplacian is the divergence of the
gradient. In essence, the Laplacian measures the in�nitesimal rate of change of the function
f in outward rays along spheres. Iff (x; y; z) = x2y + z3, then an example of computing the
Laplacian is given by

r 2f (x; y; z) =
�

@2

@x2
�
x2y + z3�

�
+

�
@2

@y2
�
x2y + z3�

�
+

�
@2

@z2
�
x2y + z3�

�

= 2y + 6z:

138
c 2015 Tyler Holden



5.1 Vector Derivatives 5 Vector Fields

All of these vector derivatives are exceptionally important in physics and mathematics. Of
particular note is the Laplacian, which is central to the study of partial di�erential equations and
harmonic analysis.

We have already seen the gradient: it physically represents the direction of steepest ascent. The
names associated to divergence and curl are also done with a purpose. We do not yet have the tools,
but one can show that the curl of a vector �eld in R3 corresponds to in�nitesimal circulation of
the vector �eld (how quickly the �eld is spinning around), while the divergence is the in�nitesimal
ux of the vector �eld (how quickly the �eld is spreading out). For this reason, if F is a vector
�eld such that curl F = 0, we say that F is irrotational . Similarly, if div F = 0 we say that F is
incompressible.

Proposition 5.1

Let f; g : Rn ! R and F; G : Rn ! Rn all be C1 (taking n = 3 when appropriate). Then
the gradient, divergence, and curl all satisfy the following properties:

grad (fg ) = f gradg + ggradf

grad (F � G) = ( F � r )G + F � (curl G) + ( G � r )F + G � (curl F)

curl ( f G) = f curl G + (grad f ) � G

curl (F � G) = ( G � r )F + (div G)F � (F � r )G � (div F)G

div ( f G) = f div G + (grad f )G

div ( F � G) = G � (curl F ) � F � (curl G)

Proof. The majority of these are straightforward if laborious, so we will only do one as an example.
Let's show that

curl ( f G) = f curl G + (grad f ) � G :

Let G = ( G1; G2; G2) so that f G = ( fG 1; fG 2; fG 3). The x-component of curl (f G) is

curl ( f G)1 =
@
@y

(fG 3) �
@
@z

(fG 2)

=
@f
@y

G3 + f
@G3
@y

�
@f
@z

G2 � f
@G2
@z

= f
�

@G3
@y

�
@G2
@z

�
+

�
@f
@y

G3 �
@f
@z

G2

�

= f (curl G)1 + [grad f � G)]1

= [ f (curl G)1 + grad f � G)]1 :

Hence thex-coordinates of both vectors agree. Since all other components follow precisely the same
reasoning (just replacey and z with z and x respectively) the result follows.

The next two identities worth pointing out are the following:

curl (grad f ) = 0 ; div (curl F) = 0 :

c 2015 Tyler Holden

139



5 Vector Fields 5.2 Arc Length

In fact, in higher level mathematics this is e�ectively contained in de�nition of divergence and curl.
A very nice diagram is the following:

scalar
function

grad
���!

vector
�elds

curl��!
vector
�elds

div��!
scalar

functions
;

which is (up to renaming some things) called thede Rham complex.

5.2 Arc Length

While arc length is a subject that can be discussed in introductory calculus, its generalization to
curves in Rn will prove important for this section so we re-iterate its treatment here. Given a curve,
one can naively attempt calculate its arc length by approximating it with successively �ner and
�ner piecewise linear curves. The non-calculus way of doing this requires suprema and partitions
and involves introducing a notion of recti�ability (read as: ability to break into piecewise functions).
This o�ers the advantage that it allows us to compute the arc length of many curves which cannot
be described asC1 functions, but will not be useful for our purposes.

Instead, let's use our formidable calculus experience to formulate an expression for arc length.
Recall that given two points x = ( x1; : : : ; xn ) and y = ( y1; : : : ; yn ) in Rn their distance is described
as

jx � yj =
p

(x1 � y1)2 + � � � + ( xn � yn )2 =

"
nX

i =1

(x i � yi )2

# 1
2

:

Assume we were to approximate our curveC by in�nitesimal straight line components, and �x a
point x so that the straight line extends to x + d x. The distance between these two points is then

jx � (x + d x)j = j dxj =
q

dx2
1 + � � � + d x2

n : (5.1)

(xn ; yn ) x

x + dx

jdxj

Figure 39: Left: We can approximate a C1 curve by a piecewise linear curve. Right: In the
in�nitesimal limit, the length of each piecewise linear segment isj dx|.

We often write ds = j dxj, which we call an element of arc. The total arc length will then
be given by integrating ds over the length of the curve. As it stands, this is not a particularly
attractive element to work with, so to facilitate our computations we introduce a parameterization
of our curve. Assume that C is given by the equation x = g(t), where g : [a; b] ! Rn , so that

dx = g0(t)dt =
�

dg1

dt
; : : : ;

dgn

dt

�
dt
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which in turn means that we can rewrite (5.1) as

ds = j dxj =

s �
dg1

dt

� 2

+ � � � +
�

dgn

dt

� 2

dt:

By integrating from a to b we then have

Arclength( C) =
Z

C
ds =

Z b

a
jg0(t)jdt =

Z b

a

s �
dg1

dt

� 2

+ � � � +
�

dgn

dt

� 2

dt:

This has a particularly appealing physical interpretation: If g(t) describes the position of a particle
with respect to time, then g0(t) is its velocity and jg0(t)j is its speed. By integrating the speed over
all time, we then get the distance travelled which is precisely the arc length.

Example 5.2

Show that the circumference of a circle with radiusr is precisely 2�r .

Solution. This is a result with which we are all familiar, but that familiarity is because we were
told that it is true, and not because we have ever derived the solution ourselves. Our curve in
question is the circle of radiusr , which we know admits a very simple parametric descriptions as

(x; y) = g(t) = ( r cos(t); r sin(t)) ; 0 � t � 2�:

The velocity is then g0(t) = ( � r sin(t); r cos(t)) and the speed is

jg0(t)j =
q

r 2 sin2(t) + r 2 cos2(t) = r

Our arc length formula then gives

Arclength( C) =
Z 2�

0
jg0(t)jdt =

Z 2�

0
rdt = 2 �r

as required. �

Notes:

1. Typically, the arc-element ds = jg0(t)jdt is exceptionally di�cult to integrate, since the square
root of a sum is rarely amenable to standard tricks.

2. The arc-length formula computestotal distance travelled, not necessarily the arc length of the
graph of the curve. For example, in Example 5.2, letting 0� t � 4� corresponds to traversing
the circle twice. It is easy to see that our arc-length in this case is 4�r = 2 � 2�r . Thus even
though the graph only shows a single circle, the parameterization travelled the circle twice.

3. Arc length should be independent of parameterization, as entailed by our physical intuition;
that is, our distance travelled shouldn't depend on how quickly I moved. As an example, if
you run a kilometre or crawl a kilometre, the distance you travelled is still just one kilometre!
We prove this in more detail in the following proposition.
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Proposition 5.3

Arc length is invariant under re-parameterization. More precisely, if g : [a; b] ! Rn is a C1

function and � : [a; b] ! [c; d] is a re-parameterization of g(t) (so that g � � : [c; d] ! Rn )
then Z

[c;d]

�
�
�
�

d
dt

(g � � )( t)

�
�
�
� dt =

Z

[a;b]
jg0(t)jdt:

Proof. The proof is immediate, since

�
�
�
�

d
dt

g(� (t))

�
�
�
� = jg0(� (t)) jj � 0(t)j

and by Theorem 4.38 we have

Z

[a;b]
jg0(t)jdt =

Z

� � 1 ([a;b])
jg0(� (t)) jj det D� (t)jdt

=
Z

[c;d]
jg0(� (t)) jj � 0(t)jdt

=
Z

[c;d]

�
�
�
�

d
dt

(g � � )( t)

�
�
�
� dt:

5.3 Line Integrals

Scalar functions: The next type of integration we are going to look at is a generalization of our
multivariable integration. Let f : U � Rn ! R be a continuous function and C � U a smooth
curve. We already know how to integrate f over U to get the total volume between the graph of
f (x) and the Rn plane. What if instead we wanted to know the area which lies between the the
curve C and the graph of f (x)? The answer is the line integral of a scalar function, de�ned as
follows: Let g : [a; b] ! Rn be a parameterization ofC, and take

Z

C
f ds =

Z b

a
f (g(t)) jg0(t)j dt:

If we think about this formula, we will see that it gives the desired result. In particular, if f � 1
then our formula just returns the formula for arc length. By including the f (g(t)) term, we are
weighting the value of the curve at each point by the value that the curve takes onf (x). Integrating
over all of [a; b] then gives the area underf (x) which lies on the curve C.

Example 5.4

Compute
R

C
1

1+ z=2 where C is the curve g(t) = ( � 2 sin(t); 2 cos(t); 2t2) from [0; 1].
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U

C

f (C)

Figure 40: Integrating a scalar-valued function overU yields the area under the graph off , but
only along the curve C.

Solution. We begin by settingf (x; y; z) = 1
1+ z=2 . One can easily computeg0(t) = ( � 2 sin(t); 2 cos(t); 2t)

so that jg0(t)j = 2
p

1 + t2. Furthermore,

f (g(t)) = f (� 2 sin(t); 2 cos(t); 2t2) =
1

1 + t2

so our line integral becomes

Z

C

1
1 + z2 ds =

Z 1

0

1
1 + t2
| {z }
f (x;y;z )

2
p

1 + t2
| {z }

jg0(t ) j

dt

= 2
Z 1

0

1
p

1 + t2

= 2
Z �= 4

0

sec2(� )
sec(� )

d� let t = tan( � )

= 2 ln jsec(� ) + tan( � )j �= 4
0

= 2 ln
�
�
�t +

p
1 + t2

�
�
�
1

0

= ln j
p

2 + 1j:

Alternatively, one could realize that d
dt sinh� 1(t) = 1p

1+ t2 and that sinh � 1(t) = ln( t +
p

t2 + 1). �

Vector Fields: In my experience, line integrals of scalar functions are not particularly interesting
and do not often manifest naturally (either in mathematics or otherwise). However, of far greater
utility is computing line integrals through vector �elds. The set up is as follows: Let F : Rn ! Rn

be a vector �eld, and C � Rn be some smooth curve. Parameterize this curve byg : [a; b] ! Rn ,
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and think of the vector �eld acting on the curve at each point t0 2 [a; b]. Our goal is to compute
the \total amount of work" done by the vector �eld on the curve.

To put this into a more physical setting, imagine a �sh that swims along a curve C, and let
F : R3 ! R3 be a vector �eld describing the current of the water at each point. As the �sh swims
through the water, the current acts on the �sh by pushing it in the direction indicated by the vector
�eld. We want to compute the amount of work done by vector �eld on the �sh.

If we are travelling in the direction d x then the force experienced is given byF � dx. In our
original set up (in Rn ) our line integral is thus

Z

C
F � dx =

Z

C
(F1 dx1 + � � � + Fn dxn ) =

Z b

a
F(g(t)) � g0(t)dt:

The change of variable formula will quickly convince you that this formula's magnitude is invariant
under change of parameterization, but notice that it can change sign. In our �sh-analogy, imagine
the �sh swimming with the current in a river, versus swimming exactly the same path but against
the current of the river. In both cases, the total magnitude of work is the same, but in one instance
the �sh had to exert energy to work against the current, and in the other the �sh was moved by
the current with no energy required. Hence orientation can change the sign of the line integral.
Furthemore, notice that multiplying and dividing by the speed function jg0(t)j and recalling that
the element of arc satis�es ds = jg0(t)j dt we have

Z b

a
F(g(t)) �

g0(t)
jg0(t)j

jg0(t)jdt =
Z b

a
F(g(t)) � T̂ (t)ds

where T̂ (t) = g0(t )
jg0(t ) j is the unit speed vector. The componentF(g(t)) � T̂ (t) is the projection of F in

the direction of T̂ , and is precisely the component of the �eldF doing work in the direction of T̂ .

Example 5.5

Evaluate the line integral
R

C F � dx if C is the curve g(t) = ( t; t 2; t2) for 0 � t � 1, and
F(x; y; z) = ( xyz; y2; z).

Solution. Clearly g0(t) = (1 ; 2t; 2t) and F(g(t)) = F(t; t 2; t2) = ( t5; t4; t2) so their dot product yields

F(g(t)) � g0(t) = ( t5; t4; t2) � (1; 2t; 2t) = t5 + 2 t5 + 2 t3 = 3 t5 + 2 t3:

Integrating gives

Z 1

0
F(g(t)) � g0(t)dt =

Z 1

0
3t5 + 2 t3

=
1
2

�
t6 + t4� 1

0

= 1 : �
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Example 5.6

Evaluate the line integral
R

C F � dx if F is the same vector �eld in Example 5.5 but C is the
curve

C =
�

(x; y; z) : x2 + y2 = 1 ; z = 1
	

:

Solution. We can parameterizeC via the function g(t; z) = (cos( t); sin(t); 1) where 0 � t � 2� .
One can compute that

F(g(t)) =
�
cos(t) sin(t); sin2(t); 1

�
; g0(t) = ( � sin(t); cos(t); 0);

F(g(t)) � g0(t) = � cos(t) sin2(t) + cos(t) sin2(t) + 0 = 0

and hence
Z

C
F � dx = 0. �

These examples are not typical in that they were actually easily solved. Example 5.5 was simple
because everything was written as polynomials, while Example 5.6 magically became zero before
having to integrate. In general, line integrals will yield exceptionally nasty integrands, necessitating
that we expand our line integral toolbox.

5.4 Green's Theorem

Line integrals can be quite tricky to compute and so we would like to develop tools to facilitate
their computation. Before proceeding, we will have to make a few preliminary de�nitions:

De�nition 5.7

1. A simple closed curveof Rn is a simple curve (see De�nition 3.16) whose endpoints
coincide.

2. A regular region in Rn is a compact subset ofRn which is the closure of its interior.

3. A regular region S � Rn has apiecewise smooth boundaryif its boundary @Sis a �nite
union of piecewise, simple closed curves.

Example 5.8

1. The circle S1 is a simple closed curve. Indeed, chooseg(t) = (cos( t); sin(t)), 0 � t � 2�
to parameterize the circle. It is clearly injective on (0; 2� ), and the endpoints coincide
sinceg(0) = g(2� ).

2. The set [0; 1][ f 2g is certainly compact, but is not a regular region. Indeed, its interior
is the set (0; 1) whose closure is [0; 1].

Given a regular region S � R2 with a piecewise smooth boundary@S, we de�ne the Stokes'
orientation to be the orientation of the boundary such that the interior of the set is \on the left."
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Figure 41: A regular region with a piecewise smooth boundary and the Stokes orientation. Notice
that the orientation on the internal boundary is the opposite of the external boundary.

Notice in particular that this will mean that a space with a hole in it will have its external boundary
oriented counter-clockwise, while the interior boundary will be oriented clockwise.

Theorem 5.9: Green's Theorem

If S � R2 is a regular region with piecewise smooth boundary@S, endowed with the Stokes
orientation, and F : R2 ! R2 is a C1-vector �eld, then

Z

@S
F � dx =

ZZ

S

�
@F2
@x1

�
@F1
@x2

�
dA:

The full proof requires an argument that every spaceS in the hypothesis admits a decomposition
into \simple" sets. Rather than harp on this point, we will choose examine how the proof would
ideally work given such a simple set.

Before doing that however, let us take a second to think about what this theorem is saying:
Depending on how we choose to look at it, we can determine what is happening on the interior ofS
just by looking at something on its boundary @S; or vice-versa, we can determine something about
what's happening on the boundary ofS, just by looking at what's happening on the interior. A
priori , this is quite a surprising result: why should information about the interior and boundary
be in any way related?

On the other hand, an argument can be made that the Fundamental Theorem of Calculus only
cares about information on the boundary (and this will manifest in the proof), or alternatively that
if we know how our vector �eld is leaving/entering the set, then we can infer a lot of information
about the interior. Either way, Green's theorem is powerful and deserves some time contemplating.

Proof. Recall from our time doing iterated integrals that it is often convenient to be able to write a
region as being bounded either as a function ofx or a function of y. We will say that S is x-simple
if it can be written as

S = f a � x � b; � 1(x) � y � � 2(x)g

and y-simple if
S = f c � y � d;  1(y) � x �  2(y)g:

Assume then that S is both x-simple and y-simple, and consider for now only thex-simple
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x = bx = a

� 1(x)

C4

� 2(x)

C2

C1 C3

Figure 42: An x-simple description of our setS.

description. Label the edges@S= C1 + C2 + C3 + C4 as illustrated in Figure 42. For this part of
the proof, we are going to compute

R
C F1 dx. On the straight line components (corresponding to

x = a and x = b) we have dx = 0, and hence
Z

C
F1 dx =

Z

C2

F1 dx +
Z

C4

F1 dx:

Notice that � 2(x) runs from b to a in the Stokes orientation, so we must introduce a negative
sign to get Z

C
F1 dx =

Z b

a
F1(x; � 1(x)) dx �

Z b

a
F1(x; � 2(x)) dx: (5.2)

On the other hand, applying the Fundamental Theorem of Calculus to the following iterated inte-
gral:

ZZ

S

@F1
@y

dA =
Z b

a

Z � 2 (x)

� 1 (x)

@F1
@y

dx =
Z b

a
[F1(x; � 2(x)) � F1(x; � 1(x))] dx: (5.3)

Comparing (5.2) and (5.3) yields
Z

@S
F1 dx = �

ZZ

S

@F1
@y

dA:

Proceeding in precisely the same manner but usingy-simple description of S results in
Z

@S
F2 dy =

ZZ

S

@F2
@x

dA:

Naturally, combining these two results tells us that
Z

@S
F � dx =

ZZ

S

�
@F2
@x

�
@F1
@y

�
dA:

More generally, the remainder of the proof hinges upon the ability to decomposeS into subsets
which are both x- and y-simple; namelyS = S1 [ � � � [ Sn where theSn have disjoint interior and are
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Figure 43: To prove Green's Theorem on more general regions, we decompose the region into
subregions which are bothx- and y-simple.

xy-simple. We will omit the fact that any regular region with piecewise smooth boundary admits
such a decomposition.

Notice that interior boundaries (those that make up part of the boundary of @Si but not of @S)
have orientations which \cancel" each other out. By the additivity of line integrals and iterated
integrals, the result then follows.

Example 5.10

Compute the line integral
I

C

h�
2y +

p
1 + x5

�
dx +

�
5x � ey2

�
dy

i
;

when C is the curve x2 + y2 = R2.

Solution. This would be an exceptionally di�cult integral to calculate if one was not permitted to
use Green's Theorem; however, it becomes almost trivial after applying Green's Theorem. LetD
be the interior of the radius R-circle, which we know has area�R 2. Green's Theorem gives

I

C

� �
2y +

p
1 + x5

�

| {z }
F1

dx +
�

5x � ey2
�

| {z }
F2

dy
�

=
ZZ

D

�
@F2
@x

�
@F1
@y

�
dA

=
ZZ

D
(5 � 2) dA

= 3 �R 2:

We did not even have to compute the iterated integral since we know the area ofD ! �

Example 5.11

Determine the line integral
R

@SF � dx where F(x; y) = (1 ; xy) and S is the triangle whose
vertices are (0; 0); (1; 0) and (1; 1), oriented counter clockwise.

Solution. We can write the triangle as an x-simple set

S = f 0 � x � 1; 0 � y � xg
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so that by Green's Theorem

Z

@S

F � dx =
ZZ

S

�
@F2
@x

�
@F1
@y

�
dA =

ZZ

S
y dA

=
Z 1

0

Z x

0
y dy dx =

1
6

:

Let's compute the line integral and verify that we get the same result. Parameterize the line
C1 by g1(t) = ( t; 0) for 0 � t � 1, yielding

Z

C1

F � dx =
Z 1

0
F(g1(t)) � g0

1(t)dt =
Z 1

0
(1; 0) � (1; 0)dt = 1

To parameterize C2 we useg2(t) = (1 ; t) for 0 � t � 1 yielding

Z

C2

F � dx =
Z 1

0
(1; t) � (0; 1)dt =

Z 1

0
tdt =

1
2

:

Finally, we parameterizeC2 and g3(t) = (1 � t; 1� t) for 0 � t � 1 (we choose this overg3(t) = ( t; t )
to keep the correct orientation).

Z

C3

F � dx =
Z 1

0
(1; (1 � t)2) � (� 1; � 1)dt

=
Z 1

0
� 1 � (1 � t)2dt = �

4
3

:

Combining everything together we get

Z

C
F � dx =

Z

C1

F � dx +
Z

C2

F � dx +
Z

C3

F � dx = 1 +
1
2

�
4
3

=
1
6

exactly as we expected. �

5.5 Exact and Closed Vector Fields

Line integrals can have some pretty surprising properties. In fact, it turns out that one can actually
use line integrals to tell you something about the geometry of a surface (though this is a rather
advanced topic for this course). Nonetheless, let's set up the framework for utilizing/understanding
how this works.

5.5.1 Exact Vector Fields

Our �rst result is a version of the Fundamental Theorem of Calculus:
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Theorem 5.12: Fundamental Theorem of Calculus for Line Integrals

If C � Rn is a C1 curve given by a parameterizationg : [a; b] ! Rn and F : Rn ! Rn is a
vector �eld such that there exists a C1 function f : Rn ! R satisfying F = r f then

Z

C
F � dx = f ( (b)) � f ( (a)) :

In particular, the integral only depends on the endpoints  (a) and  (b) of the curve C.

Proof. Assume that F = r f and let C be some oriented curve with parameterization : [a; b] ! Rn .
Straightforward computation then reveals that

Z

C
F � dx =

Z b

a
F( (t)) �  0(t) dt

=
Z b

a
r f ( (t)) �  0(t) dt by the chain rule

=
Z b

a

d
dt

f ( (t)) d t

= f ( (b)) � f ( (a))

by the Fundamental Theorem of Calculus.

In general we know that the choice of curve makes a signi�cant di�erence to the value of the
line integral, so this theorem tells us that there is a particular class of vector �elds on which the
line integral does not seem to care about the path we choose. These vector �elds are so important
that we give them a special name.

De�nition 5.13

Any vector �eld F : Rn ! Rn satisfying F = r f for someC1-function f : Rn ! R is called
an exact vector �eld. The function f is sometimes referred to as ascalar potential.

Example 5.14

Determine which of the following vector �elds are exact:

1. F(x; y; z) = ( yzexyz ; xzexyz ; xyexyz ),

2. G(x; y; z) = (2 xy; x 2 + cos(z); � y sin(z)),

3. H (x; y; z) = ( x + y; x + z; y + z).

Solution. Our strategy will be to work as follows: If F = r f then we know F1 = @f
@x. We thus

integrate the 1st component with respect tox, to get f (x; y; z) = f̂ (x; y; z)+ g(y; z), where f̂ (x; y; z)
is what we compute from the integral, andg(y; z) is the \constant" (with respect to x) of integration.
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We can then di�erentiate f with respect to y to get

@f
@y

=
@̂f
@y

+
@g
@y

and compare this toF2. With any luck, we will be able to solve g(y; z) = ĝ(y; z)+ h(z), and perform
a similar technique to computeh. Of course, at the end of the day we can only evaluatef up to a
constant, but this constant will not a�ect the value of the integral.

1. The student can quickly check that f (x; y; z) = exyz works.

2. This example requires a bit more work. We integrate the �rst term with respect to x to
get f (x; y; z) = x2y + g(y; z) for some function g(y; z). Di�erentiating with respect to y and
setting @f

@y = G2 we get

@f
@y

= x2 +
@g
@y

= x2 + cos(z);
@g
@y

= cos(z):

We integrate to �nd that g(y; z) = y cos(z) + h(z) for some yet to be determined function
h(z), giving f (x; y; z) = x2y + y cos(z) + h(z). Di�erentiating with respect to z we get
@f
@z = � y sin(z) which is exactly G3. Henceh(z) is a constant, which we might as well set to
0, and we conclude thatf (x; y; z) = x2y + y cos(z).

3. We integrate F1 with respect to x to get f (x; y; z) = 1
2x2 + yx + g(y; z). Di�erentiating with

respect to y gives @f
@y = x + @g

@y. Equating to H2 tells us that @g
@y = z, so that f (x; y; z) =

1
2x2 + yx + yz + h(z). Finally, @f

@z= y + @h
@z= H3 = y + z so it must be the case that @h

@z= z,
and we conclude that

f (x; y; z) =
1
2

x2 + yx + yz +
1
2

z2: �

Example 5.15

Determine the line integral
R

C F � dx where F(x; y; z) = (2 xy; x 2 + cos(z); � y sin(z)) and C
is the curve

C =
�

(x; y; z) : x2 + y2 + z2 = 1 ; y = � z; y � 0
	

;

oriented to start at ( � 1; 0; 0)

Solution. The curve C lies on the intersection of the unit sphereS2 and the plane z = � y. This
would normally be a full circle, except for the fact that the condition y � 0 ensures that we only
pass through one hemisphere. One could parameterize this and try to compute the line integral
by hand, except that the result is truly terrifying. Instead, all one needs to realize is that the
endpoints of this curve are (� 1; 0; 0). Furthermore, in Example 5.14 we showed thatF = r f where
f (x; y; z) = x2y + y cos(z). Consequently, the line integral is just

Z

C
F � dx = f (1; 0; 0) � f (� 1; 0; 0) = 0 : �
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5.5.2 Conservative Vector Fields

We would like to explore whether there are other vector �elds for which line integrals only depend
upon endpoints. To this end, we have the following lemma:

Lemma 5.16

If F is a continuous vector �eld on an open setU � Rn then the following are equivalent:

1. If C1 and C2 are any two oriented curves inU with the same endpoints, then
Z

C1

F � dx =
Z

C2

F � dx:

2. If C is a closed curve, then Z

C
F � dx = 0 :

Proof.

(1)) (2) Pick a point a on C and declare that C has both endpoints equal toa. Clearly, these are the
same endpoints as the constant curve ata, which we call Ĉ, and so by (1) we have

Z

C
F � dx =

Z

Ĉ
F � dx = 0

where we note that integrating over the constant curve will certainly give a result of zero.

(2)) (1) Let the endpoints of C1 be calleda and b. SinceC2 has the same endpoints, we may de�ne
a closed curveC as the one which traversesC1 from a to b, and then traversesC2 from b to
a. Now C2 has the opposite orientation ofC1, so applying (2) we get

0 =
Z

C
F � dx =

Z

C1

F � dx �
Z

C2

F � dx;

from which the result follows.

Any vector �eld which satis�es either of the above (equivalent) conditions is called an conser-
vative vector �eld. The name is derived from physics: In a system in which energy is conserved,
only the initial and terminal con�gurations of the state determine energy transfer and the system
ignores all other things which happen in between.

The FTC for Line Integrals tells us that exact vector �elds are conservative. It turns out that
that this exhausts the list of all conservative vector �elds.

Theorem 5.17

If S � Rn is an open set, then a continuous vector �eldF : S ! Rn is conservative if and
only if there is a C1 function f : S ! R such that F = r f .
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a

x
x + hi

Cx

L x;h

Cx+ h

S

Figure 44

Proof. (( ) This follows from the Fundamental Theorem of Calculus for Line Integrals.

() ) Conversely, assume thatF : Rn ! Rn is a conservative vector �eld. Without loss of
generality, we shall assume thatS is connected (otherwise just do the following for each connected
component). Fix some point a 2 S, and de�ne for eachx 2 S let Cx be a curve froma to x (which
always exists since open connected sets are path-connected) and de�ne the function

f (x) =
Z

Cx

F � dx:

This is well de�ned since, by assumption, the de�nition is invariant of our choice of curve Cx . Now
we claim that r f = F and is C1, and both claims will be obvious if we show that @i f = Fi for
eachi = 1 ; : : : ; n.

To see that this is the case, we will show that thei th partial of f is precisely Fi . Fix x 2 S
and chooseh = hei su�ciently small so that the line L x ;h betweenx and x + h remains in S (see
Figure 44). Let Ĉx + h be Cx followed by L x ;h so that

f (x + h) =
Z

Cx + h

F � dx =
Z

Cx

F � dx +
Z

L x ;h

F � dx

= f (x) +
Z

L x ;h

F � dx:
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Parameterize the lineL x ;h be g(t) = x + tei for 0 � t � h so that g0(t) = ei and

Z

L x ;h

F � dx =
Z h

0
F(x1; : : : ; x i � 1; x i + t; x i +1 ; : : : ; xn ) � (0; : : : ; 0; 1; 0; : : : ; 0)dt

=
Z h

0
Fi (x1; : : : ; x i + t; : : : ; x n )dt:

Computing @f
@xi

we have

@f
@xi

= lim
h! 0

f (x + h) � f (x)
h

= lim
h! 0

1
h

Z

L x ;h

F � dx

= lim
h! 0

1
h

Z h

0
Fi (x1; : : : ; x i + t; : : : ; x n )dt

= Fi (x) L'Hôpital

5.5.3 Closed Vector Fields

Theorem 5.17 is a very nice condition, but it is fairly intractable to compute all possible line
integrals, and it can often be di�cult to ascertain whether you are the gradient of a function.

There is a relatively simple necessarycondition to determine whether a vector �eld is conser-
vative. If F = r f then Fi = @i f . Since mixed partials commute, we then have

@i Fj = @i @j f = @j @i f = @j Fi ;

or alternatively

@Fi
@xj

�
@Fj
@xi

= 0 ; i 6= j: (5.4)

Vector �elds which satisfy (5.4) are called closed vector �elds. However, not all closed vector �elds
are exact. Also, notice that if we are working in R3 then the components given in (5.4) correspond
to the components of the curl. Hence closed vector �elds ofR3 are irrotational.

154
c 2015 Tyler Holden



5.5 Exact and Closed Vector Fields 5 Vector Fields

Example 5.18 Consider the vector �eld F (x; y) = 1
x2+ y2 (� y; x) de�ned on the open set

R2nf (0;0)g. It is easy to see that

@F2
@x

=
@

@x
x

x2 + y2 =
y2 � x2

(x2 + y2)2

@F1
@y

=
@
@y

� y
x2 + y2 =

y2 � x2

(x2 + y2)2 ;

so F is a closed vector �eld.
On the other hand, let C be any circle, parameterize by (� ) = ( r cos(� ); r sin(� )). Then
 0(t) = ( � r sin(� ); r cos(� )) and our line integral becomes:

Z

Cr

F � dx =
1
r 2

Z 2�

0
(� r sin(� ); r cos(� )) � (� r sin(� ); r cos(� )) d �

=
1
r 2

Z 2�

0

�
r 2 sin2(� ) + r 2 cos2(� )

�
d�

= 2 �:

If F were conservative, this would have to be zero; henceF is an example of a closed vector
�eld which is not exact.

So what went wrong with the above example? Essentially, because our vector �eldF is not
C1 unless our space has a hole at the origin (0; 0), our vector �eld/line integral was able to detect
that hole. In fact, try computing the above line integral around any closed curve which does not
contain the origin, and you will see that the result is zero.

It turns out that closed vector �elds are locally exact. In order to describe what we mean, we
must introduce a new de�nition:

De�nition 5.19

A set U � Rn is said to bestar-shapedif there exists a point a 2 U such that for every point
x 2 U the straight line connected x to a is contained in U.

Notice that every convex set is star shaped, though the converse need not be true. For example,
Figure 45 gives an example of a star shaped set inR2 that is not convex.

Theorem 5.20: Poincar�e Lemma

If U � Rn is star-shaped andF is a closed vector �eld onU, then F is exact on U.

Proof. Without loss of generality, lets assume that U is star shaped about the origin. For any
x 2 U let  x (t) = tx be the straight line connecting the origin to x, and de�ne the function

f (x) =
Z

 x

F � dx =
Z 1

0
F1(tx )x1 + � � � + Fn (tx )xn dt:

Notice that this is well de�ned since  x (t) 2 U for all t, and there is a unique straight line connecting
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a

b

Figure 45: An example of a star shaped set which is not convex. The pointa satis�es the required
de�nition, while the point b does not.

0 to x. Now we claim that F = r f on U. Inspecting one component at a time, we have

@f
@xk

=
Z 1

0

"
nX

i =1

@Fi
@xk

(tx )tx i + Fk (tx )

#

dt

=
Z 1

0

"
nX

i =1

@Fk
@xi

(tx )tx i + Fk (tx )

#

dt sinceF is closed

=
Z 1

0

d
dt

(tF k (tx )) d t

= Fk (x):

Hencer f = F as required.

5.6 Surface Integrals

Line integrals captured the idea of a vector �eld doing work on a particle as it travelled a particular
path. A similar idea is the surface integral, which calculates the amount ofux of a vector �eld
passing through a surface.

5.6.1 Surface Area

Just as when we calculated the arc length of a curve, in order to compute surface area we are going
to heuristically examine what an area element might look like. To do this, recall that given two
linearly independent vectorsv; w 2 R3, the area of the parallelogram with vertices 0; v; w; v + w is
given by jv � wj (Figure 46). The idea is to use this, but apply it to in�nitesimal elements to get
the corresponding area of a surface, so that the in�nitesimal area-element is dA = j dx � dyj.

If we set dA = j dx � dyj, it should not come as a surprise that the surface area of a surfaceS
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x

y

w

v

v + w

Area = jv � wj

Figure 46: The area of a parallelogram inR2 is given by the determinant of the de�ning edges.

will be given by just integrating the area element

A(S) =
ZZ

S
dA

but just as in the case of arc-length, this is a infeasible equation if we don't have a parameterization
of the surface.

Thus let G : R � R2 ! R3 be a parameterization of a surfaceS in R3, and �x some (u0; v0) 2 R2.
Applying in�nitesimal translations d u and dv to (u0; v0), we get the corresponding vectors

G(u; v + d v) � G(u; v) =
@G
@v

dv; G(u + d u; v) � G(u; v) =
@G
@u

du:

These are our two \vectors" with which we will use to compute the area element. Just as in the
R3 case, we will take their cross product to get

dA =

�
�
�
�
@G
@u

�
@G
@v

�
�
�
� du dv;

and integrating over the whole surface thus gives us our surface area

A(S) =
ZZ

R

�
�
�
�
@G
@u

�
@G
@v

�
�
�
� du dv:

If we use coordinates, this expression will even look a little like our arc-length formula. Set (x; y; z) =
G(u; v) so that @G

@u = ( xu ; yu ; zu) and @G
@v = ( xv ; yv ; zv). Notice that

�
�
�
�
@G
@u

�
@G
@v

�
�
�
� =

�
�
�
�
�
�
det

0

@
e1 e2 e3

xu yu zu

xv yv zv

1

A

�
�
�
�
�
�

= j(yuzv � zuyv ; zuxv � xuzv ; xuyv � yuxv)j

=

s �
@(y; z)
@(u; v)

� 2

+
�

@(z; x)
@(u; v)

� 2

+
�

@(x; y)
@(u; v)

� 2
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This works if we have a parameterization of our surface, but what if we are givenS as the
graph of a C1-function? Recall that if z = f (x; y) then we can write this parametrically as
G(u; v) = ( u; v; f (u; v)) in which case

�
�
�
�
@G
@u

�
@G
@v

�
�
�
� =

s

1 +
�

@f
@x

� 2

+
�

@f
@y

� 2

:

Example 5.21

Find the surface area of surface de�ned byx2 + y2 + z = 25, lying above the xy-plane.

� 4

4� 4

4

10

20

Solution. We can write our surface as the graph of the functionz = 25 � x2 � y2, so that

@z
@x

= � 2x;
@z
@y

= � 2y;

and the surface element is dA =
p

1 + 4x2 + 4y2. The easiest way to integrate this is going to
be through polar coordinates. Notice that in this case we havez = 25 � r 2, and sincez > 0 this
implies that 0 � r � 5, and 0� � � 2� . Thus our integral becomes

A(S) =
ZZ

S

p
1 + 4x2 + 4y2 dx dy

=
Z 2�

0

Z 5

0
r
p

1 + 4r 2 dr d�

=
�
4

Z 101

1

p
u du u = 1 + 4 r 2

=
�
6

u3=2
�
�
�
101

1
=

�
6

(1013=2 � 1) �

5.6.2 Surface Integrals over Vector Fields

As with line integrals, surface integrals are going to depend on a choice of orientation, so what does
it mean to orient a surface? Anorientation of a surfaceS is a consistent (read: continuous) choice
of normal vector to the surface. One can think of this as saying \I wish to everywhere de�ne what
it means to be right-handed," and an orientation does that.
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Of particular use is that if S is parameterizedG(u; v), then @G
@u�

@G
@v not only encodes information

about the in�nitesimal area, but is already a normal vector! Thus a parameterization determines
an orientation of the surface, and we often write @G

@u� @G
@v = n̂ dA, where n̂ is a unit normal vector

to the surface. In particular, we can reverse the orientation simply by interchanging the roles ofu
and v! If S bounds a 3-manifold, we will say that it has Stokes’ orientation if the normal vector of
S points outwards with respect to the space it bounds.

It is worth mentioning at this point that not all surfaces are orientable. The simplest example
of a non-orientable surface is a M•obius strip, formed by twisting a rectangle and gluing to ends
together. The student can convince him/herself that if we start with a normal vector and traverse
a circle around the M•obius band, our normal vector will have ipped when we arrive back at our
original starting point. Hence one can �nd the surface area of non-orientable manifolds, but surface
integrals will not make sense.

Figure 47: The Mobius Band is a non-orientable surface.

The idea of a surface integral is thus the following: Given a vector �eld F : R3 ! R3 and a
surfaceS, we want to compute the ux of the vector �eld through the surface. E�ectively, if we
again think of a vector �eld as representing forces or the ow of a uid, the ux represents the
amount of force/uid passing through S. The vector �eld travelling in the direction n̂ is given by
F � n̂ and so the surface integral is given by integrating each of these components:

ZZ

S
F � n̂ dA:

Notice that F � n̂ is precisely the vector �eld projected onto the normal of the surface, and so at
the surface represents the vector �eld passing through the surface. Of course, this is not easily
computed without a parameterization. If G : R � R2 ! S � R3 is such a parameterization, our
ux becomes ZZ

S
F � n̂ dA =

ZZ

R
F(G(u; v)) �

�
@G
@u

�
@G
@v

�
du dv:

Example 5.22

Evaluate the ux of F(x; y; z) = ( x2 + y; y2z; x2y) through the surface S = [0 ; 1]� [0; 1]� f 0g,
oriented pointing in the positive z-direction.

Solution. It is easy to parameterize this surface as

G(s; t) = ( s; t; 0); 0 � s � 1; 0 � t � 1;

c 2015 Tyler Holden

159



5 Vector Fields 5.6 Surface Integrals

from which we get

@G
@s

�
@G
@t

=

�
�
�
�
�
�

i j k
1 0 0
0 1 0

�
�
�
�
�
�

= (0 ; 0; 1):

This is oriented in the correct direction, so we proceed with the surface integral to get
ZZ

S
F � n̂ dA =

Z 1

0

Z 1

0
(s2 + t; t 2; s2t2) � (0; 0; 1)dsdt

=
Z 1

0

Z 1

0
s2t2dsdt =

1
9

: �

Sometimes it is necessary to break our surfaces into several pieces in order to determine the
integral, as the next example demonstrates.

Example 5.23

Evaluate
RR

S F � n̂ dA where F (x; y; z) = (0 ; y; � z) and S is the surface de�ned by

S =
�

y = x2 + z2 : 0 � y � 1
	

[
�

x2 + z2 � 1 : y = 1
	

;

endowed with the Stokes orientation.

� 1 � 0:5 0:5 1
� 0:5

0:5

0:5

1

x

y

Solution. This space looks like the paraboloid, capped by the unit disk. Rather than trying to
handle both parts of S at the same time, we break it into the paraboloid S1 and the disk D
separately.

We can parameterize the paraboloid as (x; y; z) = ( r cos(� ); r 2; r sin(� )) with 0 � r � 1 and
0 � � � 2� . Then

@G
@r

= (cos(� ); 2r; sin(� )) ;
@G
@�

= ( � r sin(� ); 0; r cos(� )) :

The cross product is then easily computed and we get

@G
@r

�
@G
@�

=
�
2r 2 cos(� ); � r; 2r 2 sin(� )

�
:
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Hence

F(G(r; � )) �
�

@G
@r

�
@G
@�

�
= (0 ; r 2; � r sin(� )) � (2r 2 cos(� ); � r; 2r 2 sin(� ))

= � r 3 �
1 + 2 sin2(� )

�
:

Integrating thus gives us
ZZ

S
F � n̂ dA = �

� Z 1

0
r 3 dr

� � Z 2�

0
1 + 2 sin2(� ) d� d�

�

= � �:

Now the tricky part of doing the cap is making sure that we choose a parameterization of the
cap which gives the Stokes orientation (that is, always points in the positivey-direction). The
student can verify that

G(r; � ) = ( r cos(� ); 1; r sin(� )) ; 0 � r � 1; 0 � � � 2�

satis�es
@G
@r

�
@G
@�

= (0 ; � r; 0);

so that this is actually oriented the wrong way! This is �ne, and we can continue to work with
this parameterization, so long as we remember to re-introduce a negative sign at the end of our
computation. Now

ZZ

D
F � n̂ dA =

Z 1

0

Z 2�

0
� r dr d� = � �

so properly orienting gives the result� . Adding both factors we get � + ( � � ) = 0, so we conclude
that the ux is 0. �

5.7 The Divergence Theorem

The Divergence Theorem (or Gauss' Theorem) is the analog of Green's theorem for surface integrals.

Theorem 5.24: Divergence Theorem

Let R � R3 be a regular region with piecewise smooth boundary@R. If F : R3 ! R3 is a
C1 vector �eld and @Ris positively oriented with respect to R then

ZZ

@R
F � n̂ dA =

ZZZ

R
div FdV:

Proof. As with Green's Theorem, we will only provide a very simpli�ed proof which nonetheless
captures the idea of the Divergence Theorem.

Assume that R is an xy-simple set, so that we can write it as

R = f (x; y) 2 W;  1(x; y) � z �  2(x; y)g
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where W 2 R2 is some regular region. Breaking the statement of the Divergence Theorem into its
vector components, our aim is to show that

ZZ

@R
F3 � ê3 � n̂ dA =

ZZZ

R

@F3
@x3

dV

where ê3 = (0 ; 0; 1) is the standard unit normal in the positive z-direction. Note that ê3 � n̂ = 0
along the vertical line segments occurring along the boundary ofW , while ê3 is consistent with the
orientation of the top surface (x; y; � 2(x; y)) and is the opposite orientation of the bottom surface
(x; y; � 1(x; y)). Thus,

ZZ

@R
F3ê3 � n̂ dA =

ZZ

W
[F3(x; y; � 2(x; y)) � F3(x; y; � 1(x; y))] dx dy

=
ZZ

W

Z � 2 (x;y )

� 1 (x;y )

@F3
@x3

(x; y; z) dz

=
ZZZ

R

@F3
@x3

dV

which is exactly what we wanted to show.

Example 5.25

Evaluate
RR

S F � n̂ dA where F(x; y; z) = ( y2z; y3; xz) and S is the boundary of the cube
de�ned by

C = f� 1 � x � 1; � 1 � y � 1; 0 � z � 2g;

oriented so that the normal points outwards.

Solution. This would normally be a rather tedious exercise: The reason is that the vector �eld
provides no obvious symmetry, requiring that we compute the surface integral through each of
the six faces of the separately and then add them all up (try it yourself!). With the Divergence
Theorem however, this becomes much more simple. It is not too hard to see that the cube is a
regular region andF is a C1 vector �eld, hence the Divergence Theorem applies and

ZZ

S
F � n̂ dA =

ZZZ

C
div F dA

=
Z 1

� 1

Z 1

� 1

Z 2

0

�
3y2 + x

�
dz dy dx

= 2
Z 1

� 1

�
y3 + xy

� y=1
y= � 1

= 4
Z 1

� 1
[1 + x] dx = 8 : �
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Example 5.26

Determine the ux of

F(x; y; z) = ( xz sin(yz) + x3; cos(yz); 3zy2 � ex2+ y2
);

through the capped paraboloid

S =
�

x2 + y2 + z = 4
	

[
�

x2 + y2 � 4; z = 0
	

:

Solution. This is an almost impossible exercise to approach from the de�nition, so instead we use
the Divergence Theorem. One can easily compute that

div F =
�
z sin(yz) + 3 x3�

+ ( � z sin(yz)) + (3 y2) = 3 x3 + 3y2:

Hence if V is the �lled paraboloid so that @V= S then our surface integral becomes
ZZ

S
F � n̂ dA =

ZZZ

V
(3x2 + 3y2)dV:

To determine this integral, notice that we can write

ZZZ

V
(3x2 + 3y2)dV =

ZZ

D

Z 4� x2 � y2

0
(3x2 + 3y2) dz dA

whereD is the unit disk. Changing to polar coordinates (or cylindrical if we skip the previous step)
gives

Z 2

0

Z 2�

0

Z 4� r 2

0
3r 3 dz d� dr = 6 �

Z 2

0
r 3(4 � r 2) dr d�

= 6 �
�

16�
64
6

�
= 32�: �

5.8 Stokes' Theorem

Stokes' Theorem, in another form, is the ultimate theorem from which Green's Theorem and the
Divergence Theorem are derivative; albeit we will not likely see this form in this class. Hence we
present to you, the \baby Stokes'" theorem. The idea of Stokes theorem is that we take a step
back, and examine how one computes line integrals inR3 in general.

Unsurprisingly, the theorem says something about looking at the boundary of a set. Since we
know that such integrations are dependent upon orientation, we need to de�ne our �nal notion of
positive/Stokes' orientation. Let S be a smooth surface inR3 with piecewise smooth boundary@S.
We say that @Sis positively oriented or endowed with the Stokes’ orientationwith respect to S if,
whenever t is the tangent vector of a parameterization of@Sand n is the orientation of S, then
n � t points into S. More informally, if we walk around @S, our body aligned with n, then S will
be to the left.
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Theorem 5.27: Stokes' Theorem

Let S be a smooth surface with piecewise smooth boundary@S, endowed with the Stokes'
orientation. If F : R3 ! R3 is a C1- vector �eld in a neighbourhood of S, then

Z

@S
F � dx =

ZZ

S
(curl F) � n̂ dA:

Proof. First note that if S is just a region in the xy-plane, then n̂ = (0 ; 0; 1) and so

(curl F) � n̂ =
@F2
@x1

�
@F1
@x2

and hence Green's Theorem gives

Z

@S
F � dx =

ZZ

S

�
@F2
@x1

�
@F1
@x2

�
dA:

Thus we see that Stokes' theorem in thexy-plane is just Green's theorem.

Now assume that S is a surface which does not live in one of the coordinate planes and let
G : W ! S be a parameterization ofS, where the regionW lives in the uv-plane. Furthermore,
assume thatG preserves boundaries and gives an orientation which coincides with the orientation
of S (if G(u; v) gives the opposite orientation, just switch the roles ofu and v).

The idea is that since the boundaries are preserved underG and since Stokes' theorem is just
Green's theorem, we will \pullback" the calculation to the uv-plane and apply Green's Theorem.
As always, we shall do this component by component; in particular, we shall just look at theF1

component. In e�ect, take F = ( F1; 0; 0) so that this amounts to showing

Z

@S
F1 dx1 =

ZZ

S

�
0;

@F1
@x3

; �
@F1
@x2

�
� n̂ dA:

Applying our parameterization, the right-hand side becomes

ZZ

S

�
0;

@F1
@x3

; �
@F1
@x2

�
� n̂ dA =

ZZ

W

�
0;

@F1
@x3

; �
@F1
@x2

�
�
�

@G
@u

�
@G
@v

�
du dv

=
ZZ

W

�
@F1
@x3

@(z; x)
@(u; v)

�
@F1
@x2

@(x; y)
@(u; v)

�
du dv:

On the other hand, using the Chain rule and Green's Theorem, the left-hand-side yields

Z

@W
F1

�
@x
@u

du +
@x
@v

dv
�

=
ZZ

W

�
@

@u

�
F1

@x
@v

�
�

@
@v

�
F1

@x
@u

��
du dv

=
ZZ

W

�
@F1
@x3

@(z; x)
@(u; v)

�
@F1
@x2

@(x; y)
@(u; v)

�
du dv:

which is exactly what we had above, giving the desired equality.
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Example 5.28

Let C be the curve given by the intersection ofz = x and x2 + y2 = 1, oriented counter
clockwise when examined from (0; 0; 1), with S such that @S= C. Let F(x; y; z) = ( x; z; 2y).
Compute both I

C
F � dx;

ZZ

S
(curl F) � n̂ dA:

Solution. We can parameterizeC as

 (� ) = (cos( � ); sin(� ); cos(� )) ; 0 � � � 2�

so that

I

C
F � dr =

Z 2�

0
(cos(� ); cos(� ); 2 sin(� )) � (� sin(� ); cos(� ); � sin(� )) d �

=
Z 2�

0
� cos(� ) sin(� ) + cos2(� ) � 2 sin2(� ) d�

= 0 + � � 2� = � 2�:

On the other hand, the curl of F is easily computed to be

curl F = det

0

@
e1 e2 e3

@x @y @z

x z 2y

1

A = (1 ; 0; 0):

We can parameterize our surface is almost exactly the same way as the curve (though now we let
our radius vary) as

g(r; � ) = ( r cos(� ); r sin(� ); r cos(� )) ; 0 � r � 1; 0 � � � 2�:

Hence
@g
@r

= (cos(� ); sin(� ); cos(� )) ;
@g
@�

= ( � r sin(� ); r cos(� ); � r sin(� 0)

giving an area element of
@g
@r

�
@g
@�

= ( � r; 0; � r ):

Integrating gives

Z 2�

0

Z p
2

0
(1; 0; 0) � (� r; 0; r ) dr d� =

Z 2�

0

Z p
2

0
� r dr d�

= 2 �
�
�

1
2

r 2
� p

2

r =0

= � �: �
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Example 5.29

Let S =
�

(x; y; z) : x2 + y2 + z2 = 1 ; z � 0
	

. If @Sis oriented counter clockwise when viewed
from (0; 0; 1), and

F(x; y; z) =
�

xy + xez;
1
6

�
2x3 + 3x2 + y2z

�
;
p

1 + x2 + zy
�

;

compute
I

C
F � dx.

Solution. It is clear that @Sis just the unit circle in the xy-plane, and so we can parameterize it as
g(t) = (cos( t); sin(t)) for t 2 [0; 2� ]; however, it makes this integral almost impossible to compute
directly. Our goal is thus to use Stokes theorem, so we compute the curl to be

r � F =
�

@F3
@y

�
@F2
@z

;
@F1
@z

�
@F3
@x

;
@F2
@x

�
@F1
@y

�

=

 
z

2
p

1 + x2 + zy
�

zy
3

; xez �
x

p
1 + x2 + zy

; x2

!

:

Unfortunately, the unit normal on S is constantly changing and the integral is still rather horri�c.
However, one of the beautiful things about Stokes theorem is that it tells us is that the line integral
over C can be computed in terms of an integral overS, but it does not say which S that has to be.
In particular, if there is a more convenient S to choose, we should take it!

We notice then that C is just the boundary of the unit disk S0 =
�

(x; y; 0) : x2 + y2 = 1
	

,
and the corresponding orientation on S which yields the counterclockwise orientation on C is
n̂ = (0 ; 0; 1). Hence our integral simply becomes

I

C
F � dx =

ZZ

S0
(curl F) � n̂dS =

ZZ

S0
x2dS

This integral is much easier done. Converting to polar coordinates, we get
Z

S0
x2dS =

� Z 1

0
r 3 dr

� � Z 2�

0
sin2(� ) d�

�
=

�
4

: �

5.9 Tensor Products

5.9.1 The De�nition

We know that, given two vectors in the same space, there isn't a very meaningful way of multi-
plying them together to get a vector back. Sure, one can perform pointwise multiplication on the
components, but the object that is returned is not useful for studying vector spaces. Furthermore,
what happens if we want to multiply two vectors which are from di�erent vector spaces?

We are faced with the following challenge: Given twoR vector spacesV and W , is there a
meaningful way to `multiply' them together? What is meaningful? Our motivation is the following
two examples:
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1. To devise a method for describing product states. This is especially useful in statistic and
quantum mechanics, as will be described later.

2. To approximate or describe multilinear objects via linear objects, in the most e�cient way
possible. This is the reason of greatest interest to mathematicians, and will be our principal
motivation.

Again, the important property here is the idea of multilinearity, which we de�ne below:

De�nition 5.30

Let V1; : : : ; Vn and W be vector spaces andT : V1 � � � � � Vn ! W be a map. We say thatT
is multilinear if for each i 2 f 1; : : : ; ng, the map T is linear in the i -th component when all
other components are held constant.

Remark 5.31 Consider the map f : R � R ! R given by f (x; y) = xy. This map is
multilinear since

f (x1 + x2; y) = ( x1 + x2)y = x1y + x2y = f (x1; y) + f (x2; y);

and similarly f (x; y1 + y2) = f (x; y1) + f (x; y2). However, f is not a linear map of vector
spaces, since

f
�

(x1; y1) + ( x2; y2)
�

= f (x1 + x2; y1 + y2)

= ( x1 + x2)(y1 + y2) = x1y1 + x1y2 + y1x2 + y2x2

= [ f (x1; y1) + f (x2; y2)] + [ f (x1; y2) + f (x2; y1)] :

N

There are lots of interesting multilinear maps that appear in linear algebra, but the failure of
their linearity means they cannot be properly studied within the realm of linear algebra (where
only linear maps are permitted). For example, the determinant map is multilinear: If dim V = n
then det : V � � � � � V| {z }

n-times

! R is a multilinear map. The student can check that the following are also

multilinear (but not linear) maps:

� The cross product � � � : R3 � R3 ! R3 is also a multilinear map,

� The dot product h�; �i : Rn � Rn ! R.

The properties that we would like our product to satisfy should be natural, in the sense that it
should perform very much like a product, and in particular if we temporarily write the product of
v 2 V and w 2 W as (v; w), then it should satisfy

1. (v1; w) + ( v2; w) = ( v1 + v2; w),

2. (v; w1) + ( v; w2) = ( v; w1 + w2),
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3. c(v; w) = ( cv; w) = ( v; cw); c 2 R:

In order to ensure that these things happen, we will e�ectively force them to happen.

De�nition 5.32

Given a setS, we de�ne the free vector space onS to be a vector spaceF (S) such that S is
a basis forF (S).

It turns out that free vector spaces are unique, up to an invertible linear map (an isomorphism),
and this is easily determined since vector spaces are uniquely de�ned by the cardinal of their
dimension.

Example 5.33 f S = f v1; v2; v3g then F (S) is the (real) vector space with S as a basis.
In particular, the elements of S are linearly independent and spanF (S), so every vector
v 2 F (S) can be written uniquely as

v = c1v1 + c2v2 + c3v3

for someci 2 R. If ei 2 R3 is the standard basis vectors forR3, then T : F (S) ! R3 given
by T(vi ) = ei is an invertible linear map, so that F (S) �= R3.

To ensure that our desired properties happen, we will construct a vector space with these
properties. Consider the spaceF (V � W ), which is the free vector space whose basis is given by
all the elements ofV � W . Note that this is a very large vector space: if one ofV and W is not
the trivial vector space, then F (V � W ) is an in�nite dimensional vector space.

Next, we will consider the subspaceS � F (V � W ) generated by the following elements:

(v1; w) + ( v2; w) � (v1 + v2; w); (v; w1) + ( v; w2) � (v; w1 + w2);

c(v; w) � (cv; w); c(v; w) � (v; cw):

We de�ne the tensor product of V and W , denoted V 
 W , to be F (V � W )=S.
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Proposition 5.34

If V; W are real vector spaces and dimV = n, dim W = m then the following facts hold true
in the vector spaceV 
 W :

1. Properties (1)-(3) all hold,

2. V 
 W is a �nite dimensional vector space with dim(V 
 W ) = mn,

3. If f v1; : : : ; vng is a basis ofV and f w1; : : : ; wm g is a basis forW then

f vi 
 wj : i 2 f 1; : : : ; ng; j 2 f 1; : : : ; mgg

is a basis forV 
 W .

4. If f : V1 � � � � � Vn ! W is a multilinear map, then there exists a unique linear map
F : V1 
 � � � 
 Vn ! W such that F (v1 
 � � � 
 vn ) = f (v1; : : : ; vn ).

This proposition is fairly involved, so we will omit its proof. However, note that property (4)
in particular tells us that we can use the tensor product to turn multilinear maps into linear maps
over a di�erent vector space, and hence study those maps using the tools of linear algebra. In fact,
the correspondence in (4) is bijective, so we will sometimes not distinguish betweenf and F

Dual Spaces: If V is a vector space, we de�ne its dual vector space, denotedV � as

V � = f f : V ! R : f is linearg:

The student can check that this is a vector space, and if dimV = n then dim V � = n. Furthermore,
there is a canonical isomorphism� : V ! (V � ) � de�ned by � (v)f = f (v).

Let f ei g be a basis forV . We de�ne the dual basis f f i g of V � to be the basis which satis�es
the condition

f i (ej ) =

(
1 i = j

0 i 6= j
:

Now if f : V k ! R is a multilinear map, then the corresponding linear function on the tensor
product space (which we will also denote byf , is a linear map f : V 
 k ! R; that is, f 2 (V 
 k ) � �=
(V � ) 
 k . Sincef f i g is a basis forV � , f f i 1 
 � � � 
 f i k g is a basis for (V � ) 
 k and hence we can write

f =
X

(i 1 ;:::;i k )

ci 1 ;:::;i k f i 1 
 � � � 
 f i k :

For notation sake, this is rather clumsy. Recall that in the discussion of Taylor Series, we learned
about multi-indices. If I = ( i 1; : : : ; i k ) we will denote by f I = f i 1 
 � � � 
 f i k , and we can rewrite
the above as

f =
X

I

cI f I

We can go one step further, and say that iff : V1 ! W1 and g : V2 ! W2 are both linear maps,
there is an induced mapf 
 g : V1 
 V2 ! W1 
 W2 given by

(f 
 g)(v1 
 v2) = f (v1) 
 g(v2):
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If f f i g and f hi g are dual bases forV �
1 and V �

2 respectively, and we write f and g in terms of their
dual bases

f =
X

i

ci f i ; g =
X

j

dj hj

then their product is f 
 j =
P

ij ci dj f i 
 hj .

Exercise:

1. Check that (V � )k �= (V k ) � and (V � ) 
 k �= (V 
 k ) � .

2. Let Hom(V; W) = f f : V ! W; f is linearg. Show that Hom(V; W) �= V � 
 W .

5.9.2 (Anti-)Symmetric Maps

So tensor products give us a means of studying multilinear maps using linear tools, so long as we
are willing to modify our vector space. There are two very important types of multilinear maps in
which one is typically interested: Let f : V � � � � � V ! W be a multilinear map.

1. We say that f is symmetric if for any i < j we have

f (v1; : : : ; vj ; : : : ; vi ; : : : ; vn ) = f (v1; : : : ; vi ; : : : ; vj ; : : : ; vn ):

2. We say that f is anti-symmetric if for any i < j we have

f (v1; : : : ; vj ; : : : ; vi ; : : : ; vn ) = � f (v1; : : : ; vi ; : : : ; vj ; : : : ; vn ):

Symmetric tensors often arise in the study of inner products or hermitian products, since those
maps are symmetric multilinear. However, this is not the goal of our discussion, so we will not
spend much time thinking symmetric maps. Instead, we will be more interested in anti-symmetric
maps.

Proposition 5.35

Let V and W be a �nite dimensional vector space with dimV = n.

1. If k � n and f : V k ! W is an anti-symmetric map, then if f v1; : : : ; vkg is linearly
dependent, necessarily

f (v1; : : : ; vk ) = 0 :

2. If k > n then there are no anti-symmetric mapsf : V k ! W .

This proposition is not too di�cult and its proof is left as an exercise for the student. It can
be shown that the collection of k-multilinear alternating maps is a vector subspace of the space of
k-multilinear maps, and as such we will denote this set by �k (V ). To determine the dimension of
this subspace, we need to introduce a basis:
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Let V be a vector space with basisf ei g and let f f i g be a dual basis forV � . If I = ( i 1; : : : ; i k )
is a multi-index, de�ne the map f I : V 
 k ! R by

f I (v1; : : : ; vk ) = det

0

B
B
B
@

f 1(v1) f 1(v2) � � � f 1(vk )
f 2(v1) f 2(v2) � � � f 2(vk )

...
...

. . .
...

f k (v1) f k (v2) � � � f k (vk )

1

C
C
C
A

:

Proposition 5.36

If V is an n-dimensional vector space with dual basisf f i g for V � , the set
n

f (i 1 ;:::;i k ) : i 1 < i 2 < : : : < i k

o

is a basis � k (V ). Consequently, dim � k (V ) =
� n

k

�
.

We de�ne the wedge productas the following map on thef I de�ned above

f I ^ f J = f IJ ;

and extend linearly.

Proposition 5.37

The wedge product satis�es the following properties:

1. Anti-symmetry: If v 2 � k (V ) and w 2 � ` (V ) then v ^ w 2 � k+ ` (V ) and

v ^ w = ( � 1)k` w ^ v:

2. Linearity: (cv1 + v2) ^ w = c(v1 ^ w) + ( v2 ^ w)

3. Associativity (u ^ v) ^ w = u ^ (v ^ w),

4. If I = ( i 1; : : : ; i k ) then f I = f i 1 ^ � � � ^ f i k .

5.9.3 Di�erential Forms

Okay, that is enough about tensors in general. It is now time to look at di�erential forms and how
they are de�ned. Let S be a n-manifold, and for each p 2 S let Vp be the tangent space atp.
Choose a basisf vp

1; : : : ; vp
ng be a basis for this tangent space, andf dxp

1; : : : ; dxp
ng be a basis of its

dual spaceV �
p . A di�erential k-form is a C1 function S !

F
p2 S � k (Vp); that is, a function which

assigns to every pointp 2 S an element of the dual space of the tangent space atp. The collection
of di�erential k-forms on S is denoted 
 k (S).

Let us consider the case whenS is a 3-manifold.

� The 0-forms on S are just the C1-functions S ! R.

c 2015 Tyler Holden

171



5 Vector Fields 5.9 Tensor Products

� The 1-forms are functions which lookp 7! f (p)dxp
1 + g(p)dxp

2 + h(p)dxp
3. We will often drop

the p dependence and just writefdx 1 + gdx2 + hdx3.

� The 2 forms look like fdx 1 ^ dx2 + gdx1 ^ dx3 + hdx2 ^ dx3.

� The 3 forms look like fdx 1 ^ dx2 ^ dx3.

Exterior Derivative: The exterior derivative is a map d : 
 k (S) ! 
 k+1 (S) de�ned as follows:
If f : S ! R is a function, then

df =
nX

k=1

@f
@xk

dxk

is the usual di�erential of f . If ! = fdx 1 + gdx2 + hdx3 is a 1-form, then we de�ne

d! = df ^ dx1 + dg ^ dx2 + dh ^ dx3:

In general, if ! =
P

I f I dxI is a di�erential k-form, then d! =
P

I df I ^ dxI .

Relation to Vector Fields: In R3 there are ways to realize di�erential forms as vector �elds.

� In the case of 0-forms, there is nothing to do.

� Identify the 1-form ! = F1dx + F2dy + F3dz with the vector �eld F = ( F1; F2; F3).

� Identify the 2-form ! = F1dy^ dz+ F2dx^ dz+ F3dx^ dy with the vector �eld F = ( F1; F2; F3).

� Identify the 3-form ! = fdx ^ dy ^ dz with the function f : S ! R.

These identi�cations allow us to realize the exterior derivative as our vector derivatives gradient,
curl, and divergence. Indeed, iff : S ! R is a 0-form/function, then

df =
@f
@x

dx +
@f
@y

dy +
@f
@z

dz �
�

@f
@x

;
@f
@y

;
@f
@z

�
= r f:

If ! = F1dx + F2dy + F3dz � F = ( F1; F2; F3) then

d! = dF1 ^ dx + dF2 ^ dy + dF3 ^ dz

=
�

@F1
@x

dx +
@F1
@y

dy +
@F1
@z

dz
�

^ dx +
�

@F2
@x

dx +
@F2
@y

dy +
@F2
@z

dz
�

^ dy

+
�

@F3
@x

dx +
@F3
@y

dy +
@F3
@z

dz
�

^ dz

=
�

@F3
@y

�
@F2
@z

�
dy ^ dz +

�
@F3
@x

�
@F1
@z

�
dx ^ dz +

�
@F2
@x

�
@F1
@y

�
dx ^ dy

�
�

@F3
@y

�
@F2
@z

;
@F3
@x

�
@F1
@z

;
@F2
@x

�
@F1
@y

�
= curl F :
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Finally, if ! = F1dy ^ dz + F2dx ^ dy + F3dx ^ dz � F = ( F1; F2; F3) then

d! = dF1 ^ dy ^ dz + dF2 ^ dx ^ dz + dF3 ^ dx ^ dz

=
�

@F1
@x

dx +
@F1
@y

dy +
@F1
@z

dz
�

^ dy ^ dz +
�

@F2
@x

dx +
@F2
@y

dy +
@F2
@z

dz
�

^ dx ^ dz

+
�

@F3
@x

dx +
@F3
@y

dy +
@F3
@z

dz
�

^ dx ^ dy

=
�

@F1
@x

+
@F2
@y

+
@F3
@z

�
dx ^ dy ^ dz

�
@F1
@x

+
@F2
@y

+
@F3
@z

= div F

Interestingly, one can show that d � d = 0 regardless of the dimension of the manifold and the
forms to which it is being applied.

Pullbacks: Let F : S ! T be a function between manifolds, and letf dx1; : : : ; dxng be di�erential
forms on T. One can de�ne the pullback of a di�erential form on T to be the di�erential form on
S given by

F � (fdx 1 ^ � � � ^ dxn ) = ( f � F )d(x1 � F ) ^ � � � ^ d(xn � F )

where x i � F = Fi is the i th component of the function F . For example, let S = � [0; 1] � [0; 2� ]
and T = D1 where D1 is the unit disk. De�ne the map F : S ! T by F (r; � ) = ( r cos(� ); r sin(� )).
The pullback of the form dx ^ dy is then given by

F � (f (x; y)dx ^ dy) = d(x1 � F ) ^ d(x2 � F ) = dF1 ^ dF2

= f (F (r; � ))(cos(� )dr � r sin(� )d� ) ^ (sin(� )dr + r cos(� )d� )

= f (F (r; � )) � r sin2(� )d� ^ dr + r cos2(� )dr ^ d� �

= f (F (r; � )) r (sin2(� ) + cos2(� ))dr ^ d�

= f (F (r; � )) r dr ^ d�:

In fact, if we think carefully about how di�erential forms are de�ned, then if F : S ! T is a
di�eomorphism with f x1; : : : ; xng the coordinates ofS and f y1; : : : ; yng, then

F � (fdy 1 ^ � � � ^ dyn ) = ( f � F ) det
�

@Fi
@xj

�
dx1 ^ � � � ^ dxn :

E�ectively, this allows us to write the Change of Variable Theorem as follows:

Theorem 5.38: Change of Variables

If F : S ! T is a di�eomorphism between S and T, then
Z

S
F � (! ) =

Z

T
!:

Note however that this version of the Change of Variables Theorem does keep track of orienta-
tion, so it is not quite identical to Theorem 4.38.
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Stokes' Theorem: The power of di�erential forms is that it allows us to generalize Stokes'
theorem to higher dimensions, and to see in fact that Green's Theorem, the Divergence Theorem,
and Baby Stokes' Theorem, are all equivalent. As with all the aforementioned cases, one needs to
talk about some suitable notion of the orientation of the boundary with respect to the thing which
it bounds. As a general rule, we orient the boundary in a manner that points inwards.

Theorem 5.39: Stokes' Theorem

Let M be an n-dimensional C1 manifold with boundary @M, oriented in a compatible way.
If ! 2 
 n (M ) then Z

@M
! =

Z

M
d!:

5.9.4 Closed and Exact Forms

Our notions of closed and exact conservative vector �elds now extends to the context of di�erential
forms.

De�nition 5.40

Let ! be an n-form ina Rk .

1. We say that ! is exact if there exists an (n � 1)-form � such that d� = ! . We denote
the exact k-forms on S as B k (S).

2. We say that ! is closed if d! = 0. We denote the closedk-forms on S as Z k (S).

aThe B stands for boundary, since there is a sense in whichd� is the boundary of � . The Z stands for
Zyklen, which is the German word for cycle.

It was mentioned before that d � d = 0. This means that all exact forms are closed, since if
! = d� then d! = d(d� ) = 0. In particular, this means that B k (S) � Z k (S). In general, the
converse is not true. For example, the one form

x
x2 + y2 dx �

y
x2 + y2 dy 2 
 1(R2 n f 0g)

is closed but not exact. As in the case of conservative vector �elds, the problem is somehow captured
by the presence of the hole at the origin. If our space does not have holes, then all closed vector
�elds will be exact, as exempli�ed by the following generalized version of Poincar�e's Lemma:

Theorem 5.41: Poincar�e's Lemma

If S � Rn is a star shaped set and! 2 
 k (S) is an closedk-form, then ! is exact.

Finally, one can precisely measure the failure of closed forms from being exact, by computing
the de Rham cohomologyof a space. LetS be a smoothk-manifold, and recognize that we have
the following \chain" of vector spaces

0 d //
 0(S) d //
 1(S) d //� � � d //
 k� 1(S) d //
 k (S) d //0
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